

VO

INTRODUCTION

- 1 -

- Coding theory is about clever ways of adding redundancy to messages to allow for (efficient) error detection and correction.
- COMMUNICATIONS MODEL

- EXAMPLE (parity code)

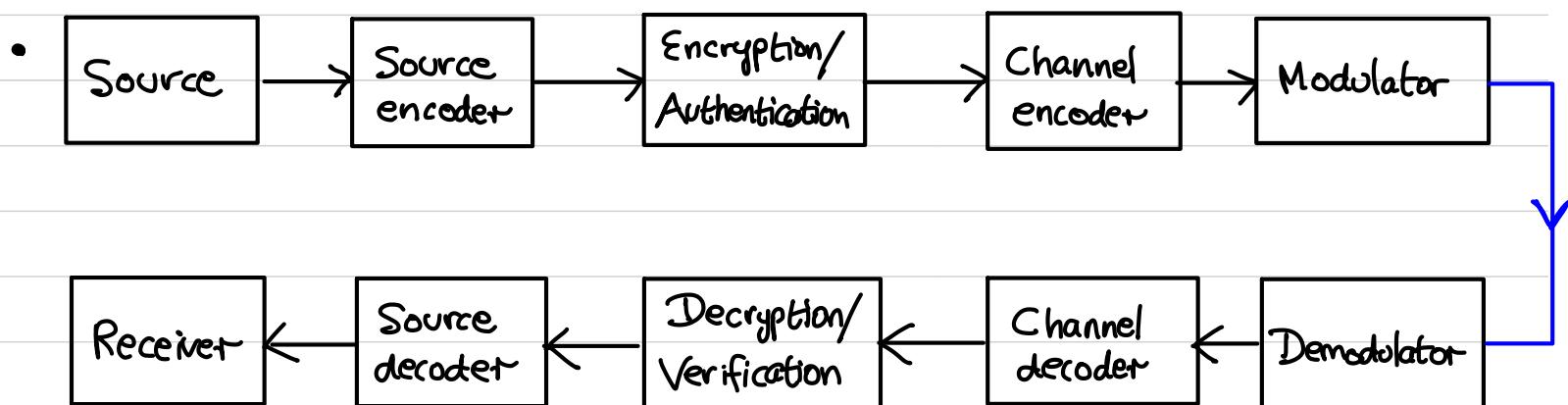
Encoding algorithm: Add a parity bit to the (binary) message.

Decoding algorithm: If the number of 1's in the received message + is even, then accept +; else reject +.

EXAMPLE (binary replication code)

Source messages	Codeword	# errors/codeword that can always be detected	# errors/codeword that can always be corrected *	Information rate
0	0	0	0	1
1	1			
0	00	1	0	$1/2$
1	11			
0	000	2	1	$1/3$
1	111			
0	0000	3	1	$1/4$
1	1111			
0	00000	4	2	$1/5$
1	11111			

encoding algorithm


* using "nearest neighbour decoding"

GOALS OF CODING THEORY

- Design codes with (i) High error-correcting capability.
(ii) High information rate.
(iii) Efficient encoding and decoding algorithms.
- "Efficient" = efficient in hardware and software.
- COURSE OVERVIEW This course deals with algebraic methods for designing good (block) codes. These codes are used for reliable communications and storage: space probes, CD/DVD/BlueRay, wireless, disk storage, QR codes, etc.
- NOT COVERED LDPC codes, Turbo codes, Raptor codes, Polar codes,.....
And newer applications: Distributed storage, compressed sensing, group testing, learning theory, algorithm design, complexity theory,.....

THE BIG PICTURE

- Coding theory in its broadest sense deals with techniques for the efficient, secure and reliable transmission of data over communications channels that might be subject to non-malicious errors (noise) and adversarial intrusion. The latter includes passive intrusion (eavesdropping) and active intrusion (injection/deletion/modification).

COURSE OUTLINE

-5-

LEARNING OUTCOMES

- 1) Demonstrate a fundamental understanding of the binary symmetric channel, decoding strategies, and the challenges in designing good codes.
- 2) Construct codes, and devise efficient encoding and decoding algorithms for them as a means of gaining exposure to the applications of linear algebra and abstract algebra.
- 3) Analyze the properties of major families of algebraic codes including linear codes, Hamming codes, Golay codes, cyclic codes, BCH codes, and Reed-Solomon codes.

COURSE PREREQUISITES

- Linear Algebra: vector spaces, linear independence, basis, Gaussian elimination, null space of a matrix, rank of a matrix.
- Elementary Number Theory: congruences, integers modulo n (\mathbb{Z}_n), primes, Fermat's Little Theorem.

COURSE INGREDIENTS

- Linear Algebra
- Abstract Algebra
(groups, rings, fields)

EXERCISES

- Problem sets for each chapter (with solutions).

REFERENCES

- "An Introduction to Error Correcting Codes",
Paul van Oorschot & Scott Vanstone (1989).
- "Modern Coding Theory",
Tom Richardson & Rüdiger Urbanke (2008)
- "Essential Coding Theory",
Venkatesan Guruswami, Atri Rudra & Madhu Sudan (2023)
- "Algebraic Coding Theory",
Mary Wootters (2021)