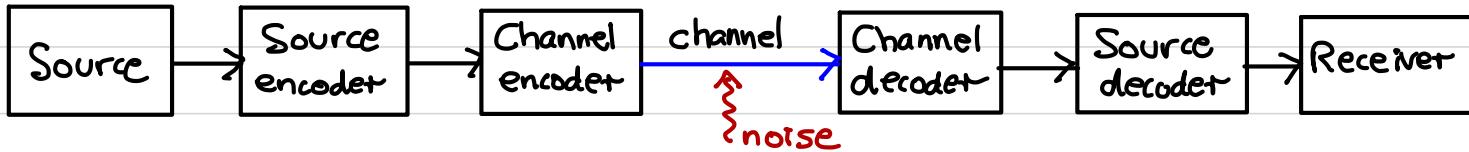
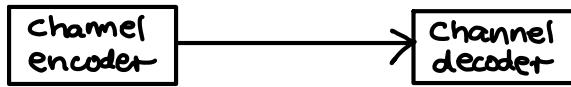


V1a BASIC DEFINITIONS AND CONCEPTS



DEFINITIONS

- An alphabet A is a finite set of $q \geq 2$ symbols.
- A word is a finite sequence of symbols from A (also: vector, tuple).
- The length of a word is the number of symbols it has.
- A code C over A is a finite set of words (with $|C| \geq 2$).
- A codeword is a word in the code C .
- A block code is a code in which all codewords have the same length.
- A block code of length n containing M codewords over A is a subset $C \subseteq A^n$ with $|C| = M$. C is called an $[n, M]$ -code over A .



-9-

- EXAMPLE

$C = \{00000, 11100, 00111, 10101\}$ is a $[5,4]$ -code over $\{0,1\}$.

<u>Source messages</u>	<u>Codewords</u>
00	00000
01	11100
10	00111
11	10101

- The channel encoder only transmits codewords.
However, what is received may not be a codeword.

- EXAMPLE

$t = 11000$ is received.

What should the channel decoder do?

ASSUMPTIONS ABOUT THE CHANNEL

(1) Only symbols from A are transmitted ("hard decision coding").

(2) No symbols are lost/added/interchanged during transmission.

(3) The channel is a q -symmetric channel:

- Let $A = \{a_1, a_2, \dots, a_q\}$.

- Let $X_i = i^{\text{th}}$ symbol sent.

- Let $Y_i = i^{\text{th}}$ symbol received.

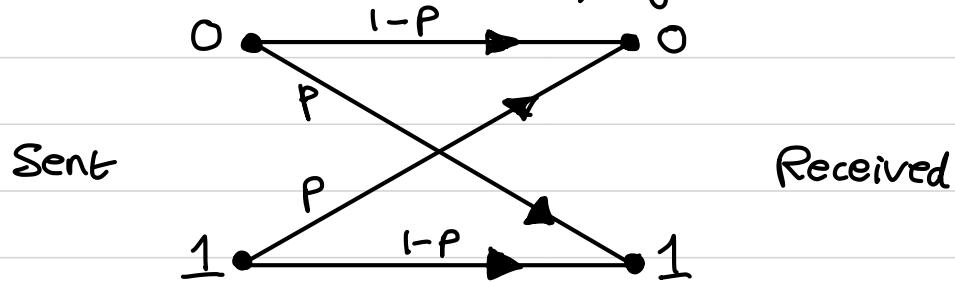
- For all $i \geq 1$, $1 \leq j, k \leq q$, $\Pr(Y_i = a_k | X_i = a_j) =$

$$\Pr(Y_i = a_k | X_i = a_j) = \begin{cases} 1-p, & \text{if } j=k, \\ \frac{p}{q-1}, & \text{if } j \neq k. \end{cases}$$

p is called the symbol error probability of the channel ($0 \leq p \leq 1$).

BINARY SYMMETRIC CHANNEL (BSC)

- A 2-symmetric channel is called a binary symmetric channel.



- For a BSC:

- (i) If $p=0$, the channel is perfect.
- (a) If $p=1/2$, the channel is useless.
- (3) If $1/2 < p < 1$, then flipping all received bits converts the channel to a BSC with $0 < p < 1/2$.

(4) Henceforth, we will assume that

$0 < p < \frac{1}{2}$ for a BSC.

EXERCISE

- For a q -symmetric channel, show that one can take

$$0 < p < \frac{q-1}{q}$$

without loss of generality.

Hint: First consider the case $q=3$.

- In the remainder of the course, we shall assume that

$$0 < p < \frac{q-1}{q}$$

INFORMATION RATE

DEFINITION The information rate (or rate) R of an $[n, M]$ -block code C over an alphabet A of size q , is $R = (\log_2 M)/n$.

- If C encodes messages that are the k -tuples over A (so $|C|=q^k$), then $R = k/n$.

- Note : $0 < R \leq 1$. Ideally, R should be close to 1.

- EXAMPLE The rate of the binary code $C = \{00000, 11100, 00111, 10101\}$ is $R = 2/5$.

HAMMING DISTANCE

-14-

DEFINITION The Hamming distance (or distance) between two n -tuples in A^n is the number of coordinate positions in which they differ.

THEOREM (properties of Hamming distance)

For all $x, y, z \in A^n$: (1) $d(x, y) \geq 0$, with $d(x, y) = 0$ iff $x = y$.

(2) $d(x, y) = d(y, x)$.

(3) $d(x, y) + d(y, z) \geq d(x, z)$ (triangle inequality)

DEFINITION The Hamming distance (or distance) of an $[n, M]$ -code C is $d(C) = \min \{d(x, y) : x, y \in C, x \neq y\}$.

EXAMPLE The distance of $C = \{000000, 11100, 00111, 10101\}$ is $d(C) = 2$.

V1b DECODING STRATEGIES

EXAMPLE Let $C = \{00000, 11100, 00111, 10101\}$.

C is a $[5, 4]$ -code over $\{0, 1\}$ (a binary code) with $R = 2/5$ and $d(C) = 2$.

ERROR DETECTION If C is used for error detection only, the strategy is the following: A received word $t \in A^n$ is accepted iff $t \in C$.

ERROR CORRECTION Let C be an $[n, M]$ -code over A with distance d .

Suppose that $c \in C$ is transmitted and $t \in A^n$ is received.

The (channel) decoder must decide one of the following:

- (i) No errors have occurred; accept t .
- (ii) Errors have occurred; correct (or decode) t to a codeword $c \in C$.
- (iii) Errors have occurred; correction is not possible.

NEAREST NEIGHBOUR DECODING

INCOMPLETE MAXIMUM LIKELIHOOD DECODING (IMLD)

If there is a unique codeword $c \in C$ such that $d(t, c)$ is a minimum, then decode t to c . If no such c exists, then reject t (ask for retransmission or disregard the information).

COMPLETE MAXIMUM LIKELIHOOD DECODING (CMLD)

Same as IMLD, except that if there are two or more $c \in C$ for which $d(t, c)$ is minimum, decode t to an arbitrary one of these.

IS IMLD A REASONABLE STRATEGY?

THEOREM IMLD chooses the codeword $c \in C$ for which the conditional probability $P(r|c) = P(r \text{ is received} | c \text{ is sent})$ is largest.

PROOF Suppose $c_1, c_2 \in C$ with $d_1 = d(c_1, r)$, $d_2 = d(c_2, r)$. Suppose that $d_1 > d_2$.

$$\text{Now, } P(r|c_1) = (1-p)^{n-d_1} \left(\frac{p}{q-1}\right)^{d_1} \text{ and } P(r|c_2) = (1-p)^{n-d_2} \left(\frac{p}{q-1}\right)^{d_2}.$$

$$\text{And, } \frac{P(r|c_1)}{P(r|c_2)} = (1-p)^{d_2-d_1} \left(\frac{p}{q-1}\right)^{d_1-d_2} = \left(\frac{p}{(1-p)(q-1)}\right)^{d_1-d_2}.$$

$$\text{Now, } \frac{p}{(1-p)(q-1)} < 1 \iff p < (1-p)(q-1) \iff p < q - pq - 1 + p \iff pq < q - 1 \iff p < \frac{q-1}{q}.$$

Thus, $\frac{P(r|c_1)}{P(r|c_2)} < 1$, so $P(r|c_1) < P(r|c_2)$, and the result follows. \square

MINIMUM ERROR PROBABILITY DECODING (MED)

- An ideal strategy would be to decode r to a codeword $c \in C$ for which $P(c|r) = P(c \text{ is sent} | r \text{ is received})$ is largest. This is MED.

- EXAMPLE (IMLD/CMLD is not the same as MED)

Consider $C = \{ \overset{C_1}{000}, \overset{C_2}{111} \}$, and suppose that $P(C_1) = 0.1$ and $P(C_2) = 0.9$.
 Suppose $p = \frac{1}{4}$ (for a BSC).

Suppose $r = 100$ is the received word.

Then $P(c_1|r) = P(r|c_1) \cdot P(c_1)/P(r) = p(1-p)^2 \times 0.1 / P(r) = \frac{9}{640} \cdot \frac{1}{P(r)}$.
 And $P(c_2|r) = P(r|c_2) \cdot P(c_2)/P(r) = p^2(1-p) \times 0.9 / P(r) = \frac{27}{640} \cdot \frac{1}{P(r)}$.

So, MED decodes r to c_2 , whereas IMLD decodes r to c_1 .

BAYES THEOREM: $P(A \wedge B) = P(A) \cdot P(B|A) = P(B) \cdot P(A|B)$.

IMLD/CMLD vs. MED

- IMLD maximizes $P(t|c)$.
- MED maximizes $P(c|t)$.

(i) MED has the drawback that the decoding algorithm depends on the probability distribution of source messages.

(ii) If all source messages are equally likely, then CMLD and MED are identical: $P(c_i|t) = P(t|c_i) \cdot \frac{P(c_i)}{P(t)} = P(t|c_i) \cdot \frac{1}{M \cdot P(t)}$.

$M \cdot P(t)$
does not depend on i

(iii) In practice, IMLD/CMLD is used.

In this course, we will use IMLD/CMLD.

V1C ERROR CORRECTING AND DETECTING CAPABILITIES

DETECTION ONLY

STRATEGY If r is received, then accept r iff $r \in C$.

DEFINITION A code C is an e-error detecting code if the decoder always makes the correct decision if e or fewer errors per codeword are introduced by the channel.

EXAMPLE Consider $C = \{000, 111\}$.

- C is a 2-error detecting code.
- C is not a 3-error detecting code.

THEOREM A code C of distance d is a $(d-1)$ -error detecting code, but is not a d -error detecting code.

PROOF Suppose $c \in C$ is sent.

- If no errors occur, then c is received and is accepted.
- Suppose that the number of errors introduced is ≥ 1 and $\leq d-1$; let t be the received word. Then $1 \leq d(t, c) \leq d-1$, so $t \notin C$. Thus, t is rejected.
- Since $d(C) = d$, there exist $c_1, c_2 \in C$ with $d(c_1, c_2) = d$.

If c_1 is sent and c_2 is received, the decoder accepts c_2 ; the d errors go undetected. \square

CORRECTION

STRATEGY : IMLD/CMLD

DEFINITION A code C is an e -error correcting code if the decoder always makes the correct decision if e or fewer errors per codeword are introduced by the channel.

EXAMPLE Consider $C = \{000, 111\}$.

- C is a 1-error correcting code.
- C is not a 2-error correcting code.

THEOREM A code C of distance d is an e -error correcting code, where $e = \left\lfloor \frac{d-1}{2} \right\rfloor$. ($\lfloor x \rfloor$ is the largest integer $\leq x$.)

PROOF Suppose that $c \in C$ is sent, at most $(d-1)/2$ errors are introduced, and r is received. Then $d(r, c) \leq (d-1)/2$. On the other hand, if c' is any other codeword, then

$$\begin{aligned} d(r, c') &\geq d(c, c') - d(r, c) \quad (\text{by } \Delta \text{ inequality}) \\ &\geq d - (d-1)/2 \\ &= (d+1)/2 \\ &> (d-1)/2 \geq d(r, c). \end{aligned}$$

Hence, c is the unique codeword at minimum distance from r , so the IMLD/CMLD decoder correctly concludes that c was sent. □

-24-

EXERCISE Suppose $d(C)=d$, and let $e = \lfloor \frac{d-1}{2} \rfloor$. Show that C is not an $(e+1)$ -error correcting code.

SPHERE PACKING A natural question to ask is: Given A, n, M, d , does there exist an $[n, M]$ -code C over A of distance $\geq d$?

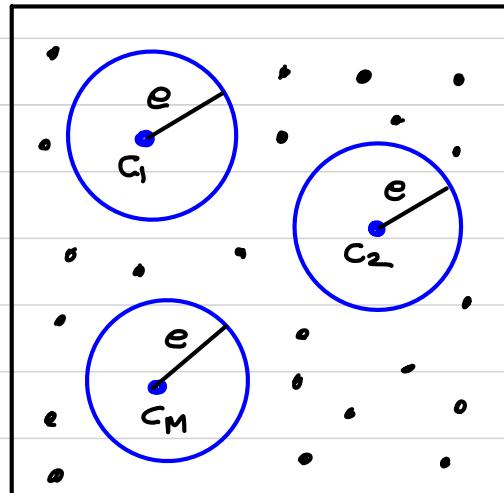
This question can be phrased as an equivalent sphere packing problem:

Can we place M spheres of radius $e = \lfloor \frac{d-1}{2} \rfloor$ in A^n , so that no two spheres overlap?

$$C = \{C_1, C_2, \dots, C_M\}, e = \lfloor \frac{d-1}{2} \rfloor.$$

$S_C =$ sphere of radius e centered at $c \in C$
= all words within distance e of c .

We proved: If $C_1, C_2 \in C, C_1 \neq C_2$, then $S_{C_1} \cap S_{C_2} = \emptyset$.



- QUESTION Let $q=2$, $n=127$, $M=2^{64}$.

Does there exist an $[n, M]$ -binary code with $d \geq 21$?

If so, can encoding and decoding be done efficiently?

• We will construct such a code in V6.

The main tools used will be linear

algebra (over finite fields) and

abstract algebra (rings and fields).

