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DEFINITION OF A LINEAR CODE
N

--
· Let F =GF(g), and let Un(F) = F= FX Fx ... -xF.

Un(F) is an nudimensional vector space over F, with In(F)) = qY.

DEFINITION A linear (n
,
R)-code over F is a Redimensional subspace of Un(F).

RECALL A subspace S of a vector space V over F is a non-empty
subset SEV such that (i)a

,
beSatbeS

,
and

(ii)S, EFXES .

If S is a subspace of V,
then S is itself a vector space over F-

in particular OS. A basis of S is a linearly independent
,

spanning subset of S . All bases of S have the same size
,
called

the dimension of S.
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PROPERTIES OF LINEAR CODES

Let C be an (n, k)-code over F=GF(g), and let Vi,va, . . .,VR be

an ordered basis for C.

) NUMBER OF CODEWORDS The codewords in C are precisely
iv,+met ... +MRVR ,

where MiEF.

Thus
,
ICI = M = qR.

2) RATE The rate of C is R===
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3) WEIGHT

DEFINITION The weight w() of a vector ven(F) is the number

of nonzero coordinates in v. .
The weight of a linear code C is

(c) = min[w(c) : CEC
,

c +O].

THEOREM If C is a linear code, then w(C) =&(C)·
PROOF We have d(C) = mindd(,y) : x

,ye6, xFy]
=min[w(x-y) : x

,y =C
,
x=y] (since d(x,y)=w(x-y))

=min[w(c) : CE 03 (since C is linear, x-ye C)
= w(C).

NOTATION An (n
,
R

,
d)-code C over F is a linear code of length n,

dimension R , and distance d.
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4) ENCODING
· Since there areq codewords

,
there are also gr source messages.

· We shall assume that the source messages are the elements of FR.
· Then

,
a convenient and natural bijection between F and C,

i

.e. an encoding rule ,
is defined by

m = (m,ma,.....,mr) +> c = m,v+m2v+ ... - +MRVR.
· NOTE Different ordered bases for C yield different encoding rules .

5) GENERATOR MATRIX : A convenient way to describe C .

DEFINITIONA generator matrix (GM) for an C,R)-codeC is a
-

kxn matrix whose rows form a basis for C : G = VI

NOTE The encoding rule is c=mG. i
--
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EXAMPLE (linear code) Consider the (5,3)-binary code
C = <10011

,
01001 , 00110) . (NOTE : C,<2

,
6 are l . i

.
over 2)

CI C2 C3 -

100 11
-

· A generator matrix for C is G = 0 100
E

O o 1 1 0

- -

3X5

· The encoding rule w.r
.
t. the GMG is =mG.

000 00000 100 > 1001/

00l >00110 10I > 10101

01 O >0100/ 11 > 11010

01 >0111/ (1) X 11100
- - u -
M C m C

· M = 1C1 = 2
3

= 8
,
R = 3/5

, d(C) = w(C) = 2
.

So, C is a (5
,
3

, 2)-binary code .
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STANDARD FORM GM

DEFINITION Let C be an (n ,
R)-code over F

.
AGM G for C of the

form G = [IRIA]Rxn is said to be in standard form.

If C has a GM in standard form,
then C is a systematic code.

EXAMPLE C = < 100011
, 001001 , 00010) is a non-systematic

(6
, 3)-binary code.

However, C' = < 100011
, 001001

, 010010) obtained by swapping
the 2nd and 4th coordinates of every codeword in C,

is systematic.
-

A GM for C' is -1000

G'= 010010 ·

00 100
- -

3x6
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EQUIVALENT CODES

DEFINITION Two codes C
,C'of length n are equivalent ifC' can

be obtained from C by choosing a permutation of coordinate positions
& l

,
2, ..., 3

,
and then consistently rearranging every codeword in C

according to this permutation.

FACTS (equivalent codes)
1

. If C is linear and C'is equivalent to C, then D is linear.

2. Equivalent linear codes have the same length , dimension,
distance

.

3. Every linear code is equivalent to a systematic code .
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DEFINITION Let C= (x1
,

(2
, . . .,

> (n)
, y= (y , y2, . . .,yn) EVn(F) .

The inner product ofx and is x. y =x, y , +22+ ....+ nyn-F.

xy are orthogonal if .

y
= 0

.

PROPERTIES For all y , JEVn(F) and XEF:

(i) x.

y = y . x .

(ii) x. (y+2) = xy+x. 2
.

(iii) (xx) .y = x(x . y).
(iv) x.x =0 does not imply that x=0

.

EXAMPLE Let C = 11/100EV(2). Then CC = 0
,
but O.

More generally , if EVn(2), then x.x=0 iff w() is even
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THE DUAL CODE

DEFINITION Let C be an (n,R)-code over F.
The dual code of C

isC = ExeVn(f): y = 0 yEC] . " = Cerp"

THEOREM If C is an (n
,R)-code over F, then C

+
is an (n,n-R)-code over

F.

PROOF Let G be aGM for C, and let the rows of G be Vi
,
Va, . . . .,

VR.

CLAIM Let xEVn(F) . Then ECt if Vic=V... .. = Up : x =0.

PROOFOF CLAIM (7) is clear since Vi
,
va, . . .,

VREC
.

1)E) Suppose VEC. Then we can write v = Xiv,+
.... XRVR

,
where

XiEF
. Then C = (, + .. .. +XRVR)x= x ,(,x)+ .... + YR(VR-x)=0

.

Thus
, C = ExeV(F) : Get = 03 = null space of G .

Since G has rank R
,
its null space is a subspace of UnCF) of dim u-R.
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PARITY-CHECK MATRIX

THEOREM If C is a linear code, then (C
+ C.

PROOF Let C be an (n ,R)-code. Then C
+
is an (n,

n-R)-code.

Furthermore, (C)
+

is an (n,
R)-code

,
and CG (C + )+

Since dim (C) = dim(CC))
,
it follows that C= (CH) +.

DEFINITION If C is a linear code, then a generator matrix H

for Ct is called a parity-check matrix (PCM) forC.

NOTES (i) H is an (n-R)xn matrix .

(ii) C has many PCMs ·
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CONSTRUCTING A PCM FOR C (AGM FOR CH

THEOREM Let C be an (n
, R)-code with GM G= [IRIA].

Then H = EAF/ In-R] is a GM for Ct .

NOTE : A is a RX (n-R) matrix ,

PROOF Since rank(H) = -R
,
H is a GM for an (n ,n-R)-code .

Also
,
GHT = CIRIAJB] =

-A+A =0
.

Thus
,
[EC

.
Since dim() =dim) = n-R

,
we have =C+

Hence
,
His a GM for C+
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EXAMPLE Consider the (5

,
2)-code Cover 3 with

GM G = (20217 .
Find a PCM for-

SOLUTION First find a GM for C in standard form.

RIE2R,
To 1 20 RER2-Ri T 0 120

G- I ↓ 001
7 -01 211

- -

-

A
-

1 10 o

H = I 2010
.

0200
- -

· We have C = 200000, 20210, 10/20, 11001, 22002, 01211, 02122, 21121, 122123.
· d(C) = w(C) = 3

,
and R = 2/5

.
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NOTES ON PCMS

Let C be an (n
,
R)-code over F with GM G.

1) An (n-R)xn matrix H over F is a PCM for Ciff
GHT = 0 and rank(H) =-R.

2) G is a PCM for C (since (C) =C).

3) Let I be a PCM for C. Then H is a GM forC,
so C=null space of H.

4) Let H be a PCM for C ,
and let EVn(F). Then EC iff Hx=0

.
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C C+ (c+) +
=C

(n ,R)-code over F (n , -R)-code over F

G : GM for C H : GM forCh

C= row space of G Ct = row space of H

H : PCM for C G : PCM for Ch

C=null space of H Ct =null space ofG

xEC if HOT=o xeC+
iffG=0
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THEOREM (distance of a linear code) LetH be a PCM for an

(n ,
R)-code Cover F

. Then d(CS iff every 5-1 columns of H

are linearly independent over F.

PROOF Let H = [hilhal ... - 1hn].
(E) Supposed (C) S-1. Let c = (c

,
c2,. . .,

Cn)EC with CEO and

w() 5-1. Without loss of generality, suppose that C =0 forSjn.
Then

, since HCT = 0
,

we have

Chi + cha + ..... + Cs- , hs- 1 + Cshst ... - +Chn =0,

so chit .... + Cs+ hs+ 1 = 0
. Since at least one of Ci,C2, . . . ., Cs-1 is

nonzero
,
the S-1 columns hi

,
ha, ...,

hs-1 of are linearly dependent.
D



-68 -

() Suppose there is a set of 5-1 columns of H that are

linearly dependent over F. Without loss of generality,
let them

be hi
,
ha, ....,

hs-
.
So

,
IxiEF

,
not all o

,
such that

xih , +x2hz + .... + As- 1 hs- 1 = 0 .

Let c = (x1
,
>2

,
. . . - -

XS+
,

0
, ...

o) EVn(F)
. Then CEC since

HCT = xih , + x2h2+ ... - + xs - hs+ 1 = 0
.. But Iw()= 5- 1

, so

1 = d(C) = 5- 1
.

COROLLARY Let H be a PCM for a linear code Cover F.

Then (C) is the smallest number of columns of H that are

linearly dependent over F
.
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-

I
I 1100

-

&
EXAMPLE In the example on slide 64,

F =
3 and H= 2 O 1 0

0200
-

· No single column of H is l. d .
over 3 (i.e. no zero column)

,

so &(C) > 2 .

· No two columns of H are 1 .d
.

over 3 (i . e. scalar multiples of
each other)

,
so dCC) > 3.

· There exist three columns of that are I .d. over 3 :
-

- ---

i
-

25 -

0

= 8,
sod(C)4

- -
· Hence =3

.
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EXAMPLE Let H be a PCM for a binary linear code C.

1) d(C) = 1 iff H has a zero column.

2) d) = 2 if H has no zero column ,
and two columns of H

are identical.

3) d(C) = 3 iff the columns of H are nonzero and distinct
,

and some column of H is the sum of two other columns .

4) etc .
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N K

↳ · ·
a

EXAMPLE Find a (7, 4,
3) - binary code C .

-

SOLUTION Construct a PCM for C : =Y 00 1 0 1 I

O 1 0 1 1 0 I a

, 10
-

0010111
-
3x7

Then a GM for C is 01 1

T :

10 I
-4

11
-

4X7

Chas n= 7
,
b=4,

d= 3
, q = 2

,
M = 16.

NOTE C is a Hamming code of order 3 over 2.
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·

Hamming codes are an infinite family of single-error correcting codes
discovered by Richard Hamming in 1950

.

100 10/1
-

· EXAMPLE Recall that H= 010 1 1 0 is a PCM for a

001 01 1
- -

(7,4,
3) -binary code C,

called the Hamming code of order 3 over 2.

DEFINITION A Hamming code of order & over F=GF(g) is an

(n
,R)-code over F with n= 1 and R=n-r

,
and with PCM Hr

,

q- 1

an rxn matrix whose columns are nonzero, and no two of
whose columns are scalar multiples of each other.
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EXAMPLE A PCM for a Hamming code of order 3 over 3 iS :

0110 1210 11 I n= 13

H3 = 010101 / 102 1 2 1
.

R= 10

I d=3-010 11 1021 21-3XB
NOTES (Hamming codes)
1) If VEVr(F) , ~ o

, then exactly one nonzero scalarmultiple of V must be

column of Hr, giving n = (q-1)/(q-1) columns in total .

2) He has ranks
,
since among the columns ofHr are scalar multiples

of the unit vectors. Hence Hamming codes of order & over GF(q)
do indeed have dimension n-p.

3) By design , Hamming codes of order & over GFG) have distance3,
and so are single-errorcorrecting codes.
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DECODING SINGLE-ERROR CORRECTING CODES

· Let H be a PCM for an (n , R,
d)-code C over F with >3.

DEFINITION Suppose CEC is sent and WEVn(F) is received.

The error vector is e =-c (sor = C+e).

EXAMPLE Over 3 : If C= 100101 and 2 =020000
,
then r= 120101

.

KEY OBSERVATIONS

1) HAT = H(c+e)+ = HcT+ HeT = HeT (since HCT=0).
2) If e =0

,
then HeT= 0. (The converse is not true!)

3) If w(e) = 1
, say e

= Co, . . .

,
0
,
L
, 0, . . .,

0)
,
then Het = Chi

,
where

ith position
hi is the ith column of H .

(The converse is not true)
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DECODING ALGORITHM FOR SINGLE-ERROR CORRECTING CODES

INPUT PCM H and a received word WeVn(F).

i Compute S= Har.

2) IfS=0 ,
then accept r as the transmitted word (so =0); STOP.

3) Compare s with the columns of H . If S= Chi for some i
,
then

set e= (o, . .

.,
0
,
2

, 0, ..., o), and decode to C=-e; STOP.
Ith position

4) Report that more than one error has occurred.

CORRECTNESS If w(e) =0 or (e)= 1
,
the decoding algorithm is

guaranteed to make the correct decision.
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EXAMPLE Consider the (7
,4, 3) - binary Hamming code with PCM

-

T 010 1 0

H = 01 100 11 ·

00 0 1 1 1 /37
L

Suppose that r = 011110.

We compute S =H=
-o

which is the 6th column of H .

!
3

=-

So, we set e= (0000010) and decode & to C = -2 = 01/1100.

6thposition
CHECK Verify that HCT= o

.
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V PERFECT CODES
An

I

↑ -
N e

-

DEFINITION Let C be an [n ,MJ-code of
- e

&

- ↑

⑧
&·

-
⑳

-
- C2 -

· C)
.
: ..

~

J

distance over A
,
with IAI=q and e= (a). .... -

·
-Then C is perfect if each EA" is in : e

-

⑳
J :.

the sphere of radius e centered at some Ce C.
CM

~

-

·

Equivalently,
C is perfect if M. (n) (9)= gr.

· For fixed 9,, d , a perfect code has maximum possible M.
In other words, a perfect code has maximum possible
rate R=M for fixed q ,

n
,
d.
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· EXAMPLE C=A" is a (trivial) perfect code with distance d= 1 .

· EXAMPLE Let n be odd
.
Then C = 2000 -.. 0

, 111 .... 13 is a
-- -

perfect binary code with distance .

N N

PROOF Let e = (n-1)/2. Then
C

M . Eo (2) (9-1)
:

= 2[(8) + (i) + (2) + .. .. + (2)]
= [(8) + (1) + .. . . - + (2)] +((+1) + (e) + .. - - +()]since R)]

.

= (1 +1) = 2.

· EXERCISE Prove that every perfect code has odd distance.
· EXERCISE Show that IMLD = CMLD for perfect codes.
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EXAMPLE All Hamming codes of order & over GF(g) are perfect.
PROOF We have n=q ,

=-W
,
d= 3

,
%%)

Now, M .S! (n) (9) = qm[((q- + (n) (2-D)
= qR[1 + n(q-1]

= qn
-[1 + (q-1)]

= g
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CLASSIFICATION OF PERFECT CODES

THEOREM STietvinen , 1973) The only perfect codes are:

1) Un(GF(q) [trivial codes] ,
2) The binary replication codes of odd lengths .

3) The Hamming codes , and all codes with the same [n
,
M

,
d] parameters.

4) The (23
,
12

,
7) - binary Golay code C23,

and all codes equivalent
to it[see V49]

,

5) The (11 ,
6
,5) -ternary Golay code and all codes equivalent to it.

A GM for this code is
-

1 1 I I
-

OI 22(

G = I6 1 O 2 2
q

210 12

2210

12210 GXII
- -
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V3 SYNDROME DECODING
Let C be an (n

, R)-code over F=GF(q) with PCM H.

DEFINITION Let,yEVn(F) .

Wewritey(modC) if ecyeC.

FACTS ( = (modC) is an equivalence relation .

2)The set of equivalence classes partitions Un(F) .

3) The equivalence class containing EVn[F) is
C+x = Eye Vn(F) : y =x (mod()) = [c+x : ceC],

and is called a coset of C.

Un(F) C #C
, CH2 CH6 000
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-

10111
EXAMPLE (cosets) Consider the (5

,2)-binary code C with GM G=0 1 /10-
I

Find all cosets of C.

SOLUTION The cosets of Care :

C = C + 00000 = 200000
, 10111 , 01110, 110013 = C+ 101= C+ 01110 =C+ 1001

.

C + 10000 = [1000000111 , 11110 ,
010013= C+00 =C+110

=C+01001.

C+ 01000 = 201000, 11111
,

00110, 10001.
C+ 00100 = 200100 ,

10011
, 01010, 111013 .

C+ 00010 = [00010, 10101
, 01100, 12011].

C+ 00001 = 200001
,
10110

,
011II

,
1,000

-

C+ 10100
= 210100, 0001

, 11010, 01101
.

+ 10010 = [10010, 0101, 100, 10].
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FACTS (cosets)

1 C + o = C
.

2) If Ye C+, then Cy = C+.

3) All cosets of Chave the same size, namely ICI = qP.
4) The number of distinct costs is -R.

DEFINITION LetH be a PCM for an (n,R)-code Cover F.

Let EUn(F). The syndrome of x (w. r. t. H) is ST.

NOTES 1) SE Vn-R (F)
.

2) All codewords have syndrome o.



THEOREM Let yeUnCF) .
Then =y(modC) if HOT= HyT.

-84-

So, cosets are characterized by their syndromes.

PROOF We have x=y (modC) iff x-yEC iff H(x-y) = 0

iff HxT = HyT.

DECODING Recall that CEC is sent and WeVn(F) is received
-

The (unknown) error vector is e = 5-c
.

Since -e=C
> we have

=e (mod C) . Thus
,
rand e are in the same cost of C.

DECODING STRATEGY Given &
, find a vector e of smallest weight

that has the same syndrome as : Het= Ha.

CMLD : Decode r to c = -e.

IMLD : If e is unique, decoder to C=-e ; else reject v.
.
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QUESTION Given H and r
, can one efficiently find a rector

e of smallest weight such that HeT = HrT ? (syndrome decoding problem]

FACT This problem is NP-hard
,
which strongly suggests that no

general-purpose efficient algorithm exists.

NP
If any NP-hard problem
can be solved efficiently,

- -~
· - then all problems in NPD
&~ /& ~ can be solved efficiently,&& so P= NP".



- 86 -
SYNDROME DECODING ALGORITHM (CMLD)

SETUP For each cost of C ,
select an arbitrary vector of smallest

weight in that coset , and call it the coset leader of that coset.
Store a table of coset coset leader syndrome 3qnsleaders and their syndromes.

DECODING ALGORITHM (CMLD)

Given E VnCF) , compute S= HrT
.

Let the corresponding coset
leader be e . Then decode u to C = -e.

NOTE The decoding algorithm is guaranteed to make the correct
decision if the error vector is a coset leader; otherwise, it

is guaranteed to make an incorrect decision.
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SELECTING COSET LEADERS

THEOREM Let C be an (n , R,d)-code over F. Let XEV(F) be

a rector of weight L). Then x is a coset leader.

PROOF Suppose y is in the same cost as
, with and

w(y) =w(x) = LM)
.

Then x=y(mod C) ,
so -yeC and

x-y +0 . But

w(x-y) = w(x+ ( y)) (w(x) + w( y) = w(x) + (y) = L )+ (E)=d - 1.

This contradicts dCC) =d
,

so no such y exists.

Hence, x is the unique vector of smallest weight in its coset,
so must be a coset leader.
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EXAMPLE (syndrome decoding for the code on slide 82)
· For the (5,2)-binary code C with GM G= 10/1 /

01110
,

we have
-

/100

a PCM H = 11 0 1 0

·
Note that (C) = 3.

1000 1
-

-

· SYNDROME TABLE DECODING

Coset leader syndrome Suppose v = 11011 .

00000 000
· Compute S =H= 010 .

10000 1 /I

01000 110
· The corresponding coset leader is

00100 100 e = 00010 .

0001 O 010
00001 001

·Decode r to c= r -e = 11001
.

10100 01 1

10010 10 I
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NOTE Syndrome decoding is not efficient in general since
the syndrome table is exponentially large ,

For an (n , R)-binary code, the syndrome table has size

2n
-R(n + (n-R) = 2n

- R (2n-R) bits.
M↑ 7 E

#Costs coset
'

Syndrome
leade

[Actually
, only 2-m bits are needed since the table can be

sorted by syndrome ,
and then the syndromes do not need

to be stored]


