Linear codes

- Weight
- Generator matrix
- Dual code
- Parity-check matrix
- Distance
- Perfect codes
- Hamming codes
- Syndrome decoding

DEFINITION OF A LINEAR CODE

- Let $F = GF(q)$, and let $V_n(F) = F^n = \underbrace{F \times F \times \dots \times F}_{n \text{ times}}$.
 $V_n(F)$ is an n -dimensional vector space over F , with $|V_n(F)| = q^n$.

DEFINITION A linear (n, k) -code over F is a k -dimensional subspace of $V_n(F)$.

RECALL A subspace S of a vector space V over F is a non-empty subset $S \subseteq V$ such that (i) $a, b \in S \Rightarrow a+b \in S$, and (ii) $a \in S, \lambda \in F \Rightarrow \lambda a \in S$.

If S is a subspace of V , then S is itself a vector space over F ; in particular $0 \in S$. A basis of S is a linearly independent, spanning subset of S . All bases of S have the same size, called the dimension of S .

PROPERTIES OF LINEAR CODES

Let C be an (n, k) -code over $F = GF(q)$, and let v_1, v_2, \dots, v_k be an ordered basis for C .

1) NUMBER OF CODEWORDS The codewords in C are precisely $m_1 v_1 + m_2 v_2 + \dots + m_k v_k$, where $m_i \in F$.
Thus, $|C| = M = q^k$.

2) RATE The rate of C is $R = \frac{\log_q M}{n} = \frac{\log_q q^k}{n} = \frac{k}{n}$.

3) WEIGHT

DEFINITION The weight $\omega(v)$ of a vector $v \in V_n(F)$ is the number of nonzero coordinates in v . The weight of a linear code C is $\omega(C) = \min \{\omega(c) : c \in C, c \neq 0\}$.

THEOREM If C is a linear code, then $\omega(C) = d(C)$.

PROOF We have $d(C) = \min \{d(x, y) : x, y \in C, x \neq y\}$
 $= \min \{\omega(x-y) : x, y \in C, x \neq y\}$ (since $d(x, y) = \omega(x-y)$)
 $= \min \{\omega(c) : c \in C, c \neq 0\}$ (since C is linear, $x-y \in C$)
 $= \omega(C)$. \square

NOTATION An (n, k, d) -code C over F is a linear code of length n , dimension k , and distance d .

4) ENCODING

- Since there are q^k codewords, there are also q^k source messages.
- We shall assume that the source messages are the elements of F^k .
- Then, a convenient and natural bijection between F^k and C , i.e. an encoding rule, is defined by
 $m = (m_1, m_2, \dots, m_k) \mapsto c = m_1v_1 + m_2v_2 + \dots + m_kv_k$.
- NOTE Different ordered bases for C yield different encoding rules.

5) GENERATOR MATRIX: A convenient way to describe C .

DEFINITION A generator matrix (G) for an (n, k) -code C is a $k \times n$ matrix whose rows form a basis for C : $G = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_k \end{bmatrix}$

NOTE The encoding rule is $c = mG$.

EXAMPLE (linear code) Consider the $(5,3)$ -binary code

$C = \langle \begin{matrix} 10011 \\ C_1 \\ 01001 \\ C_2 \\ 00110 \\ C_3 \end{matrix} \rangle$. (NOTE: C_1, C_2, C_3 are l.i. over \mathbb{Z}_2)

• A generator matrix for C is $G_1 = \begin{bmatrix} 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0 \end{bmatrix}_{3 \times 5}$.

• The encoding rule w.r.t. the GM G is $c = mG_1$.

$$000 \rightarrow 00000$$

$$100 \rightarrow 10011$$

$$001 \rightarrow 00110$$

$$101 \rightarrow 10101$$

$$010 \rightarrow 01001$$

$$110 \rightarrow 11010$$

$$011 \rightarrow 01111$$

$$111 \rightarrow 11100$$

\underbrace{m}_{m} \underbrace{c}_{c}

\underbrace{m}_{m} \underbrace{c}_{c}

$$\bullet M = |C| = 2^3 = 8, \quad R = 3/5, \quad d(C) = \omega(C) = 2.$$

So, C is a $(5,3,2)$ -binary code.

STANDARD FORM GM

DEFINITION Let C be an (n, k) -code over F . A GM G for C of the form $G = [I_k | A]_{k \times n}$ is said to be in standard form. If C has a GM in standard form, then C is a systematic code.

EXAMPLE $C = \langle 100011, 001001, 000110 \rangle$ is a non-systematic $(6, 3)$ -binary code.

However, $C' = \langle 100011, 001001, 010010 \rangle$ obtained by swapping the 2^{nd} and 4^{th} coordinates of every codeword in C , is systematic.

A GM for C' is

$$G' = \left[\begin{array}{c|c} 100 & 011 \\ 010 & 010 \\ 001 & 001 \end{array} \right]_{3 \times 6}$$

EQUIVALENT CODES

DEFINITION Two codes C, C' of length n are equivalent if C' can be obtained from C by choosing a permutation of coordinate positions $\{1, 2, \dots, n\}$, and then consistently rearranging every codeword in C according to this permutation.

FACTS (equivalent codes)

1. If C is linear and C' is equivalent to C , then C' is linear.
2. Equivalent linear codes have the same length, dimension, distance.
3. Every linear code is equivalent to a systematic code.

✓3b DUAL CODE AND PARITY CHECK MATRICES

-60-

DEFINITION Let $x = (x_1, x_2, \dots, x_n)$, $y = (y_1, y_2, \dots, y_n) \in V_n(F)$.

The inner product of x and y is $x \cdot y = x_1 y_1 + x_2 y_2 + \dots + x_n y_n \in F$.
 x, y are orthogonal if $x \cdot y = 0$.

PROPERTIES For all $x, y, z \in V_n(F)$ and $\lambda \in F$:

(i) $x \cdot y = y \cdot x$.

(ii) $x \cdot (y + z) = x \cdot y + x \cdot z$.

(iii) $(\lambda x) \cdot y = \lambda (x \cdot y)$.

(iv) $x \cdot x = 0$ does not imply that $x = 0$.

EXAMPLE Let $x = 111100 \in V_6(\mathbb{Z}_2)$. Then $x \cdot x = 0$, but $x \neq 0$.

More generally, if $x \in V_n(\mathbb{Z}_2)$, then $x \cdot x = 0$ iff $\omega(x)$ is even.

THE DUAL CODE

DEFINITION Let C be an (n, k) -code over F . The dual code of C is $C^\perp = \{x \in V_n(F) : x \cdot y = 0 \ \forall y \in C\}$. " $C^\perp = C_{\text{perp}}$ "

THEOREM If C is an (n, k) -code over F , then C^\perp is an $(n, n-k)$ -code over F .

PROOF Let G_1 be a GM for C , and let the rows of G_1 be v_1, v_2, \dots, v_k .

CLAIM Let $x \in V_n(F)$. Then $x \in C^\perp$ iff $v_1 \cdot x = v_2 \cdot x = \dots = v_k \cdot x = 0$.

PROOF OF CLAIM (\Rightarrow) is clear since $v_1, v_2, \dots, v_k \in C$.

(\Leftarrow) Suppose $v \in C$. Then we can write $v = \lambda_1 v_1 + \dots + \lambda_k v_k$, where $\lambda_i \in F$. Then $v \cdot x = (\lambda_1 v_1 + \dots + \lambda_k v_k) \cdot x = \lambda_1 (v_1 \cdot x) + \dots + \lambda_k (v_k \cdot x) = 0$. \square

Thus, $C^\perp = \{x \in V_n(F) : G_1 x^T = 0\} = \text{null space of } G_1$.

Since G_1 has rank k , its null space is a subspace of $V_n(F)$ of dim $n-k$. \square

PARITY-CHECK MATRIX

THEOREM If C is a linear code, then $(C^\perp)^\perp = C$.

PROOF Let C be an (n, k) -code. Then C^\perp is an $(n, n-k)$ -code.

Furthermore, $(C^\perp)^\perp$ is an (n, k) -code, and $C \subseteq (C^\perp)^\perp$.

Since $\dim(C) = \dim((C^\perp)^\perp)$, it follows that $C = (C^\perp)^\perp$. \square

DEFINITION If C is a linear code, then a generator matrix \mathbf{H} for C^\perp is called a parity-check matrix (PCM) for C .

NOTES

- (i) \mathbf{H} is an $(n-k) \times n$ matrix.
- (ii) C has many PCMs.

CONSTRUCTING A PCM FOR C (A GM FOR C^\perp)

THEOREM Let C be an (n, k) -code with GM $G_1 = [I_k | A]$.

Then $H = [-A^T | I_{n-k}]$ is a GM for C^\perp .

NOTE: A is a $k \times (n-k)$ matrix.

PROOF Since $\text{rank}(H) = n-k$, H is a GM for an $(n, n-k)$ -code \bar{C} .

$$\text{Also, } G_1 H^T = [I_k | A] \begin{bmatrix} -A \\ I_{n-k} \end{bmatrix} = -A + A = 0.$$

Thus, $\bar{C} \subseteq C^\perp$. Since $\dim(\bar{C}) = \dim(C^\perp) = n-k$, we have $\bar{C} = C^\perp$.

Hence, H is a GM for C^\perp . \square

EXAMPLE Consider the $(5,2)$ -code C over \mathbb{Z}_3 with

GM $G = \begin{bmatrix} 2 & 0 & 2 & 1 & 0 \\ 1 & 1 & 0 & 0 & 1 \end{bmatrix}$. Find a PCM for C .

SOLUTION First find a GM for C in standard form.

$$G \xrightarrow{R_1 \leftarrow 2R_1} \begin{bmatrix} 1 & 0 & 1 & 2 & 0 \\ 1 & 1 & 0 & 0 & 1 \end{bmatrix} \xrightarrow{R_2 \leftarrow R_2 - R_1} \begin{bmatrix} 1 & 0 & | & 1 & 2 & 0 \\ 0 & 1 & | & 2 & 1 & 1 \end{bmatrix}$$

$\underbrace{\qquad\qquad\qquad}_{A}$

$$H = \begin{bmatrix} 2 & 1 & | & 1 & 0 & 0 \\ 1 & 2 & | & 0 & 1 & 0 \\ 0 & 2 & | & 0 & 0 & 1 \end{bmatrix}.$$

- We have $C = \{00000, 20210, 10120, 11001, 22002, 01211, 02122, 21101, 12212\}$.
- $d(C) = \omega(C) = 3$, and $R = 2/5$.

NOTES ON PCMs

Let C be an (n, k) -code over F with GM G .

1) An $(n-k) \times n$ matrix H over F is a PCM for C iff $GH^T = 0$ and rank(H) = $n-k$.

2) G^T is a PCM for C^\perp (since $(C^\perp)^\perp = C$).

3) Let H be a PCM for C . Then H is a GM for C^\perp , so $C = \text{null space of } H$.

4) Let H be a PCM for C , and let $x \in V_n(F)$. Then $x \in C$ iff $Hx^T = 0$.

C	C^\perp
(n, k) -code over F	$(n, n-k)$ -code over F
$G_1: G_1 M$ for C	$H: G_1 M$ for C^\perp
$C = \text{row space of } G_1$	$C^\perp = \text{row space of } H$
$H: PCM$ for C	$G_1: PCM$ for C^\perp
$C = \text{null space of } H$	$C^\perp = \text{null space of } G_1$
$x \in C \text{ iff } Hx^T = 0$	$x \in C^\perp \text{ iff } G_1 x^T = 0$

$$(C^\perp)^\perp = C$$

THEOREM (distance of a linear code) Let H be a PCM for an (n, k) -code C over \mathbb{F} . Then $d(C) \geq s$ iff every $s-1$ columns of H are linearly independent over \mathbb{F} .

PROOF Let $H = [h_1 | h_2 | \dots | h_n]$.

(\Leftarrow) Suppose $d(C) \leq s-1$. Let $c = (c_1, c_2, \dots, c_n) \in C$ with $c \neq 0$ and $\omega(c) \leq s-1$. Without loss of generality, suppose that $c_j = 0$ for $s \leq j \leq n$. Then, since $Hc^T = 0$, we have

$$c_1h_1 + c_2h_2 + \dots + c_{s-1}h_{s-1} + c_sh_s + \dots + c_nh_n = 0,$$

so $c_1h_1 + \dots + c_{s-1}h_{s-1} = 0$. Since at least one of c_1, c_2, \dots, c_{s-1} is nonzero, the $s-1$ columns h_1, h_2, \dots, h_{s-1} of H are linearly dependent.

(\Rightarrow) Suppose there is a set of $s-1$ columns of H that are linearly dependent over F . Without loss of generality, let them be h_1, h_2, \dots, h_{s-1} . So, $\exists \lambda_i \in F$, not all 0, such that

$$\lambda_1 h_1 + \lambda_2 h_2 + \dots + \lambda_{s-1} h_{s-1} = 0.$$

Let $c = (\lambda_1, \lambda_2, \dots, \lambda_{s-1}, 0, \dots, 0) \in V_n(F)$. Then $cc^T \in C$ since $Hc^T = \lambda_1 h_1 + \lambda_2 h_2 + \dots + \lambda_{s-1} h_{s-1} = 0$. But $1 \leq \omega(c) \leq s-1$, so $1 \leq d(C) \leq s-1$. \square

COROLLARY Let H be a PCM for a linear code C over F . Then $d(C)$ is the smallest number of columns of H that are linearly dependent over F .

EXAMPLE In the example on slide 64, $F = \mathbb{Z}_3$ and $H =$

$$\begin{bmatrix} 2 & 1 & 1 & 0 & 0 \\ 1 & 2 & 0 & 1 & 0 \\ 0 & 2 & 0 & 0 & 1 \end{bmatrix}.$$

- No single column of H is l.d. over \mathbb{Z}_3 (i.e. no zero column), so $d(C) \geq 2$.
- No two columns of H are l.d. over \mathbb{Z}_3 (i.e. scalar multiples of each other), so $d(C) \geq 3$.
- There exist three columns of H that are l.d. over \mathbb{Z}_3 :
$$\begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix} - 2 \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} - \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \text{ so } d(C) \geq 4.$$
- Hence $d(C) = 3$.

EXAMPLE Let H be a PCM for a binary linear code C .

- 1) $d(C) = 1$ iff H has a zero column.
- 2) $d(C) = 2$ iff H has no zero column, and two columns of H are identical.
- 3) $d(C) = 3$ iff the columns of H are nonzero and distinct, and some column of H is the sum of two other columns.
- 4) etc.

n k d

EXAMPLE Find a $(7, 4, 3)$ -binary code C .

SOLUTION Construct a PCM for C : $H = \left[\begin{array}{c|c} 100 & 1011 \\ 010 & 1101 \\ 001 & 0111 \end{array} \right]_{3 \times 7}$.

Then a GM for C is $\left[\begin{array}{c|c} 110 & \\ 011 & \\ 101 & I_4 \\ 111 & \end{array} \right]_{4 \times 7}$.

C has $n=7$, $k=4$, $d=3$, $q=2$, $M=16$.

NOTE C is a Hamming code of order 3 over \mathbb{Z}_2 .

V3d HAMMING CODES

- Hamming codes are an infinite family of single-error correcting codes discovered by Richard Hamming in 1950.

- EXAMPLE Recall that $H = \left[\begin{array}{ccc|ccc} 1 & 0 & 0 & 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 \end{array} \right]$ is a PCM for a

$(7,4,3)$ -binary code C , called the Hamming code of order 3 over \mathbb{Z}_2 .

DEFINITION A Hamming code of order t over $F = GF(q)$ is an (n, k) -code over F with $n = \frac{q^t - 1}{q - 1}$ and $k = n - t$, and with PCM H ,

an $t \times n$ matrix whose columns are nonzero, and no two of whose columns are scalar multiples of each other.

EXAMPLE A PCM for a Hamming code of order 3 over \mathbb{Z}_3 is:

$$H_3 = \left[\begin{array}{c|c|c|c|c} 1 & 0 & 0 & 1 & 1 & 0 & 1 & 2 & 1 & 0 & 1 & 1 & 2 \\ \hline 0 & 1 & 0 & 1 & 0 & 1 & 1 & 1 & 0 & 2 & 1 & 2 & 1 \\ \hline 0 & 0 & 1 & 0 & 1 & 1 & 1 & 0 & 2 & 1 & 2 & 1 & 1 \end{array} \right]_{3 \times 13}$$

$n=13$
$k=10$
$d=3$

NOTES (Hamming codes)

- 1) If $v \in V_r(F)$, $v \neq 0$, then exactly one nonzero scalar multiple of v must be column of H_r , giving $n = (q^r - 1)/(q - 1)$ columns in total.
- 2) H_r has rank r , since among the columns of H_r are scalar multiples of the unit vectors. Hence Hamming codes of order r over $GF(q)$ do indeed have dimension $n-r$.
- 3) By design, Hamming codes of order r over $GF(q)$ have distance 3, and so are single-error correcting codes.

DECODING SINGLE-ERROR CORRECTING CODES

- Let H be a PCM for an (n, k, d) -code C over F with $d \geq 3$.

DEFINITION Suppose $c \in C$ is sent and $r \in V_n(F)$ is received.
The error vector is $e = r - c$ (so $r = c + e$).

EXAMPLE Over \mathbb{Z}_3 : If $c = 100101$ and $e = 020000$, then $r = 120101$.

KEY OBSERVATIONS

- $Hr^T = H(c+e)^T = Hc^T + He^T = He^T$ (since $Hc^T = 0$).
- If $e = 0$, then $H|e^T = 0$. (The converse is not true.)
- If $\omega(e) = 1$, say $e = (0, \dots, 0, \alpha, 0, \dots, 0)$, then $He^T = \alpha h_i$, where h_i is the i^{th} column of H . (The converse is not true.)

DECODING ALGORITHM FOR SINGLE-ERROR CORRECTING CODES

INPUT PCM H and a received word $r \in V_n(F)$.

1) Compute $s = H + r^T$.

2) If $s=0$, then accept r as the transmitted word (so $e=0$); STOP.

3) Compare s with the columns of H . If $s = \alpha h_i$ for some i , then set $e = (0, \dots, 0, \alpha, 0, \dots, 0)$, and decode to $c = r - e$; STOP.

ith position \uparrow

4) Report that more than one error has occurred.

CORRECTNESS If $\omega(e)=0$ or $\omega(e)=1$, the decoding algorithm is guaranteed to make the correct decision.

EXAMPLE Consider the $(7,4,3)$ -binary Hamming code with PCM

$$H = \begin{bmatrix} 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \end{bmatrix}_{3 \times 7}$$

Suppose that $r = 011110$.

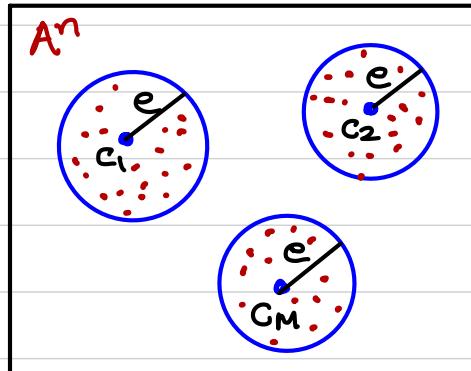
We compute $s = Hr^T = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$, which is the 6th column of H .

So, we set $e = (0000010)$ and decode r to $c = r - e = \underline{0111100}$.

CHECK Verify that $Hc^T = 0$.

V3e PERFECT CODES

DEFINITION Let C be an $[n, M]$ -code of distance d over A , with $|A|=q$, and $e = \lfloor \frac{d-1}{2} \rfloor$. Then C is perfect if each $a \in A^n$ is in the sphere of radius e centered at some $c \in C$.



- Equivalently, C is perfect if

$$M \cdot \sum_{i=0}^e \binom{n}{i} (q-1)^i = q^n.$$

- For fixed q, n, d , a perfect code has maximum possible M . In other words, a perfect code has maximum possible rate $R = \frac{\log q M}{n}$ for fixed q, n, d .

- EXAMPLE $C = A^n$ is a (trivial) perfect code with distance $d=1$.
- EXAMPLE Let n be odd. Then $C = \{\underbrace{000\dots 0}_n, \underbrace{111\dots 1}_n\}$ is a perfect binary code with distance n .

PROOF Let $e = (n-1)/2$. Then

$$\begin{aligned}
 M \cdot \sum_{i=0}^e \binom{n}{i} (q-1)^i &= 2 \left[\binom{n}{0} + \binom{n}{1} + \binom{n}{2} + \dots + \binom{n}{e} \right] \\
 &= \left[\binom{n}{0} + \binom{n}{1} + \dots + \binom{n}{e} \right] + \left[\binom{n}{e+1} + \binom{n}{e+2} + \dots + \binom{n}{n} \right] \quad [\text{since } \binom{n}{k} = \binom{n}{n-k}] \\
 &= (1+1)^n = 2^n. \quad \square
 \end{aligned}$$

- EXERCISE Prove that every perfect code has odd distance.
- EXERCISE Show that $\text{IMLD} = \text{CMLD}$ for perfect codes.

EXAMPLE All Hamming codes of order t over $GF(q)$ are perfect.

PROOF We have $n = \frac{q^t - 1}{q-1}$, $k = n - t$, $d = 3$, $e = 1$.

$$\text{Now, } M \cdot \sum_{i=0}^e \binom{n}{i} (q-1)^i = q^k \left[\binom{n}{0} (q-1)^0 + \binom{n}{1} (q-1)^1 \right]$$

$$= q^k [1 + n(q-1)]$$

$$= q^{n-t} \left[1 + \frac{q^t - 1}{q-1} (q-1) \right]$$

$$= q^n. \quad \square$$

CLASSIFICATION OF PERFECT CODES

THEOREM (Tietäväinen, 1973) The only perfect codes are:

- i) $V_n(\mathbb{GF}(q))$ [trivial codes].
- ii) The binary replication codes of odd lengths.
- iii) The Hamming codes, and all codes with the same $[n, M, d]$ parameters.
- iv) The $(23,12,7)$ -binary Golay code C_{23} , and all codes equivalent to it [see V4a].
- v) The $(11,6,5)$ -ternary Golay code and all codes equivalent to it.

A GM for this code is

$$G = \left[\begin{array}{c|cccccc} I_6 & 1 & 1 & 1 & 1 & 1 \\ & 0 & 1 & 2 & 2 & 1 \\ & 1 & 0 & 1 & 2 & 2 \\ & 2 & 1 & 0 & 1 & 2 \\ & 2 & 2 & 1 & 0 & 1 \\ & 1 & 2 & 2 & 1 & 0 \end{array} \right]_{6 \times 11}$$

V3f SYNDROME DECODING

Let C be an (n, k) -code over $F = \text{GF}(q)$ with PCM H .

DEFINITION Let $x, y \in V_n(F)$. We write $\underline{x \equiv y \pmod{C}}$ if $x - y \in C$.

FACTS 1) $\equiv \pmod{C}$ is an equivalence relation.

2) The set of equivalence classes partitions $V_n(F)$.

3) The equivalence class containing $x \in V_n(F)$ is

$$C+x = \{y \in V_n(F) : y \equiv x \pmod{C}\} = \{c+x : c \in C\},$$

and is called a coset of C .

$V_n(F)$

C	$C+x_1$	$C+x_2$	$C+x_3$	\dots	
-----	---------	---------	---------	---------	--

EXAMPLE (cosets) Consider the $(5,2)$ -binary code C with $\text{GM } G_1 = \begin{bmatrix} 1 & 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 0 \end{bmatrix}$.
Find all cosets of C .

SOLUTION The cosets of C are:

$$C = C + 00000 = \{00000, 10111, 01110, 11001\} = C + 10111 = C + 01110 = C + 11001.$$

$$C + 10000 = \{10000, 00111, 11110, 01001\} = C + 00111 = C + 11110 = C + 01001.$$

$$C + 01000 = \{01000, 11111, 00110, 10001\}.$$

$$C + 00100 = \{00100, 10011, 01010, 11001\}.$$

$$C + 00010 = \{00010, 10101, 01100, 11011\}.$$

$$C + 00001 = \{00001, 10110, 01111, 11000\}.$$

$$C + 10100 = \{10100, 00011, 11010, 01101\}.$$

$$C + 10010 = \{10010, 00101, 11100, 01011\}.$$

FACTS (cosets)

1) $C + 0 = C$.

2) If $y \in C + x$, then $C + y = C + x$.

3) All cosets of C have the same size, namely $|C| = q^R$.

4) The number of distinct cosets is q^{n-R} .

DEFINITION Let H be a PCM for an (n, k) -code C over F .

Let $x \in V_n(F)$. The syndrome of x (w.r.t. H) is $s = Hx^T$.

NOTES 1) $s \in V_{n-k}(F)$.

2) All codewords have syndrome 0.

THEOREM Let $x, y \in V_n(F)$. Then $x \equiv y \pmod{C}$ iff $Hx^T = Hy^T$.
 So, cosets are characterized by their syndromes.

PROOF We have $x \equiv y \pmod{C}$ iff $x-y \in C$ iff $H(x-y)^T = 0$
 iff $Hx^T = Hy^T$. \square

DECODING Recall that $ce \in C$ is sent and $t \in V_n(F)$ is received.
 The (unknown) error vector is $e = t - c$. Since $t - e = c$, we have
 $t \equiv e \pmod{C}$. Thus, t and e are in the same coset of C .

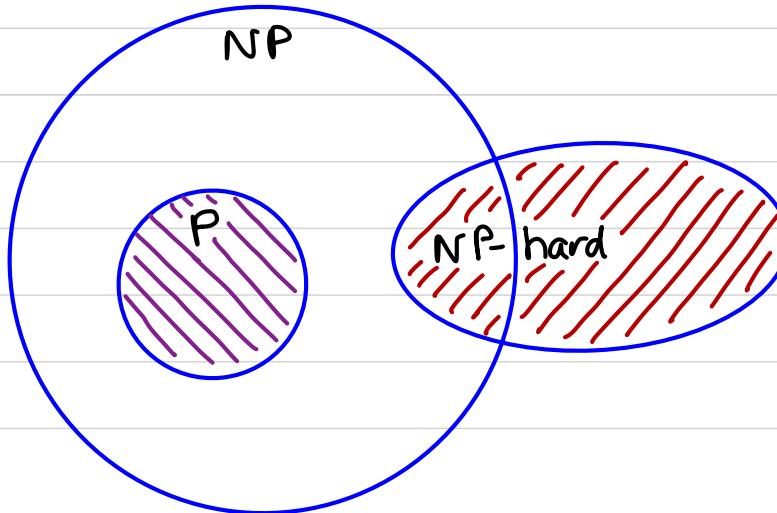
DECODING STRATEGY Given t , find a vector e of smallest weight
 that has the same syndrome as t : $He^T = Ht^T$.

CMLD: Decode t to $c = t - e$.

IMLD: If e is unique, decode t to $c = t - e$; else reject t .

QUESTION Given H and r , can one efficiently find a vector e of smallest weight such that $He^T = Hr^T$? [syndrome decoding problem]

FACT This problem is NP-hard, which strongly suggests that no general-purpose efficient algorithm exists.



If any NP-hard problem can be solved efficiently, then all problems in NP can be solved efficiently, so " $P = NP$ ".

SYNDROME DECODING ALGORITHM (CMLD)

SETUP For each coset of C , select an arbitrary vector of smallest weight in that coset, and call it the coset leader of that coset.

Store a table of coset leaders and their syndromes.

coset leader	syndrome

$\left. \begin{matrix} q^{n-k} \\ \text{rows} \end{matrix} \right\}$

DECODING ALGORITHM (CMLD)

Given $r \in V_n(F)$, compute $s = Hr^T$. Let the corresponding coset leader be e . Then decode r to $c = r - e$.

NOTE The decoding algorithm is guaranteed to make the correct decision if the error vector is a coset leader; otherwise, it is guaranteed to make an incorrect decision.

SELECTING COSET LEADERS

THEOREM Let C be an (n, k, d) -code over F . Let $x \in V_n(F)$ be a vector of weight $\leq \lfloor \frac{d-1}{2} \rfloor$. Then x is a coset leader.

PROOF Suppose y is in the same coset as x , with $y \neq x$ and $w(y) \leq w(x) \leq \lfloor \frac{d-1}{2} \rfloor$. Then $x \equiv y \pmod{C}$, so $x-y \in C$ and $x-y \neq 0$. But

$$w(x-y) = w(x+(-y)) \leq w(x) + w(-y) = w(x) + w(y) \leq \lfloor \frac{d-1}{2} \rfloor + \lfloor \frac{d-1}{2} \rfloor \leq d-1.$$

This contradicts $d(C) = d$, so no such y exists.

Hence, x is the unique vector of smallest weight in its coset, so must be a coset leader. \square

EXAMPLE (syndrome decoding for the code on slide 82)

- For the $(5,2)$ -binary code C with G, M $G = \begin{bmatrix} 1 & 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 0 \end{bmatrix}$, we have

a PCM $H = \begin{bmatrix} 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 1 \end{bmatrix}$. Note that $d(C) = 3$.

- SYNDROME TABLE

<u>coset leader</u>	<u>syndrome</u>
00000	000
10000	111
01000	110
00100	100
00010	010
00001	001
10100	011
10010	101

- DECODING

- Suppose $r = 11011$.
- Compute $s = Hr^T = 010$.
- The corresponding coset leader is $e = 00010$.
- Decode r to $c = r - e = \underline{11001}$.

NOTE Syndrome decoding is not efficient in general since the syndrome table is exponentially large.

For an (n, k) -binary code, the syndrome table has size

$$2^{n-k} (n + (n-k)) = 2^{n-k} (2n-k) \text{ bits.}$$

↑ ↑ ↑
 # cosets coset leader syndrome

[Actually, only $2^{n-k} n$ bits are needed since the table can be sorted by syndrome, and then the syndromes do not need to be stored.]