

V4a THE BINARY GOLAY CODE (1949)

- Let $\hat{B} = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 1 \\ \vdots & & & & & & & & & & & \\ 0 & 1 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 \end{bmatrix}_{12 \times 11}$. } each row is the left cyclic shift of the previous row.

- Let $\hat{G} = [I_{12} | \hat{B}]_{12 \times 23}$. \hat{G} is a GM for a $(23, 12)$ -binary code called the (binary) Golay code C_{23} . In fact, $d(C_{23}) = 7$. [proof later]

CLAIM C_{23} is a perfect code.

PROOF We have $e = \lfloor (d-1)/2 \rfloor = 3$, and

$$M \cdot \sum_{i=0}^e \binom{n}{i} (q-1)^i = 2^{12} \left[\binom{23}{0} + \binom{23}{1} + \binom{23}{2} + \binom{23}{3} \right] = 2^{23}. \quad \square$$

THE EXTENDED GOLAY CODE C_{24}

- C_{24} is the binary code with GM $G = [I_{12} | B]_{12 \times 24}$, where

$$B = \begin{bmatrix} 0 & & & \\ 1 & & & \\ \vdots & & \hat{B} & \\ 1 & & & \end{bmatrix}_{12 \times 12} \quad \left(\text{so } B = \begin{bmatrix} 0 & 111111111111 \\ 1 & 110111000010 \\ \vdots & \vdots \\ 1 & 0110110001 \end{bmatrix}_{12 \times 12} \right).$$

PROPERTIES OF C_{24}

- C_{24} is a $(24, 12)$ -binary code.
- $G G^T = 0$ [check this]. Hence $C_{24} \subseteq C_{24}^\perp$, so C_{24} is self-orthogonal. $\rightarrow C \subseteq C^\perp$
- Since $\dim(C_{24}) = \dim(C_{24}^\perp) = 12$, we have $C_{24} = C_{24}^\perp$. So, C_{24} is self-dual.
- $B = B^T$ (so B is symmetric).
- A PCM for C_{24} is $H = [-B^T | I_{12}] = [B | I_{12}]$. $\rightarrow C = C^\perp$
- Since $C_{24} = C_{24}^\perp$, H is also a GM for C_{24} .

THEOREM $d(C_{24}) = 8$.

PROOF Let the rows of G_1 be t_1, t_2, \dots, t_{12} .

i) Note that $w(t_i) = 12$ and $w(t_i) = 8$ for $2 \leq i \leq 12$.

Hence $4 \mid w(t_i)$ for all i . Now, $t_i \cdot t_j = 0$ since $G_1 G_1^T = 0$, and so the number of coordinates of t_i and t_j that are both 1 is even. Hence, $4 \mid w(t_i + t_j)$, and so every codeword has weight divisible by 4.

Thus, $d(C_{24}) = 4$ or 8.

ii) Next, we'll show that no codeword has weight 4 (so $d(C_{24}) = 8$).

- Each row of G_1 has weight ≥ 8 .

- Adding two rows of G_1 : $w(t_i + t_j) = 8$ for $2 \leq i \leq 12$. [Check this]

- $w(t_i + t_j) = 8$ for $2 \leq i < j \leq 12$. [Check this]

$$G_1 = \left[\begin{array}{c|c} I_{12} & \begin{array}{c} 011111111111 \\ 111011100010 \\ 110111000101 \\ \vdots \\ 101101110001 \end{array} \end{array} \right] \begin{array}{c} t_1 \\ t_2 \\ t_3 \\ \vdots \\ t_{12} \end{array}$$

-92-

- Adding 3 rows of G_1 : Let $c = t_i + t_j + t_k$, where $1 \leq i < j < k \leq 12$.

Let $c = (x, y)$, where x, y have length 12. Suppose $\omega(c) = 4$.

Since $\omega(x) = 3$, we have $\omega(y) = 1$. Since $H = [B \mid I_{12}]$ is also a GM for C_{24} , c must be a single row of H . This is impossible since each row of H has weight 8 or 12. Hence, $\omega(c) \neq 4$.

- Adding 4 rows of G_1 : Let $c = t_i + t_j + t_k + t_l$, where $1 \leq i < j < k < l \leq 12$.

Let $c = (x, y)$, and suppose $\omega(c) = 4$. Then $\omega(x) = 4$ and $\omega(y) = 0$.

But H does not have any such vector in its row space. Thus, $\omega(c) \neq 4$.

- Adding ≥ 5 rows of G_1 : If $c = (x, y)$ is the sum of 5 or more rows of G_1 , then $\omega(x) \geq 5$, so $\omega(c) \neq 4$. \square

COROLLARY $d(C_{23}) = 7$.

V4b A DECODING ALGORITHM FOR C24

RECALL $n=24$, $R=12$, $d=8$, $e=3$.

$G = [I_{12} | B]$ and $H = [B | I_{12}]$ are both GIMs and PCMs for C_{24} .

DECODING STRATEGY (IMLD) Compute a syndrome S of the received word r . Find a vector e of weight ≤ 3 that has syndrome S . If such a vector e exists, then decode r to $c = r - e$; else reject r .

CORRECTNESS If the error vector has weight ≤ 3 , then the decoder always make the correct decision. If the error vector has weight ≥ 4 , the decoder will either reject r , or will decode r to a codeword different from the transmitted one.

DECODING ALGORITHM FOR C24 (WITH JUSTIFICATION)

- Let $r = (x, y)$ and $e = (e_1, e_2)$, where x, y, e_1, e_2 have length 12.
- There are 5 cases (not mutually exclusive) in the event $\omega(e) \leq 3$:
 - (A) $\omega(e_1) = 0$ and $\omega(e_2) = 0$.
 - (B) $1 \leq \omega(e_1) \leq 3$ and $\omega(e_2) = 0$.
 - (C) $\omega(e_1) = 1$ or 2 , and $\omega(e_2) = 1$.
 - (D) $\omega(e_1) = 0$ and $1 \leq \omega(e_2) \leq 3$.
 - (E) $\omega(e_1) = 1$ and $\omega(e_2) = 1$ or 2 .

1) Compute the syndrome $s_1 = [I_{12} | B] r^T$.

If $s_1 = 0$, then accept r and STOP. [case A]

2) [Note: $s_1 = [I_{12} | B] r^T = [I_{12} | B] e^T = e_1^T + B e_2^T = e_1^T$. So, if we are in case B, then $1 \leq \omega(s_1) \leq 3$.] If $\omega(s_1) \leq 3$, then set $e = (s_1^T, 0)$. [case B]

Correct ∞ in the positions corresponding to the 1's in s_1 and STOP.

3) [Recall: $s_1 = e_1^T + Be_2^T$. If we are in case (C), then s_1 is equal to a column of B with one or two bits flipped (depending on which bits of e_1 are 1)]. Compare s_1 with the columns (or rows) of B . **[Case C]**

If any column of B , say column i , differs in exactly one (say j) or two (say j and k) positions from s_1 , then decode $r = (x, y)$ as follows:

Correct x in position j , or in positions j, k .

Correct y in position i , and STOP.

4) Compute the syndrome $s_2 = [B | I_{12}] + r^T = [B | I_{12}]e^T = Be_1^T + e_2^T = e_2^T$.

If $\omega(s_2) \leq 3$, then correct y in the positions corresponding to the 1's in s_2 and STOP. **[Case D]**

5) Analogous to step 3. **[Case E]**

6) Reject r (since $\omega(e) \geq 4$).

DECODING ALGORITHM FOR C24

Suppose $t = (x, y)$ is received.

- 1) Compute $s_1 = [I_{1,2} | B]t^T$. If $s_1 = 0$, then accept t and STOP. (A)
- 2) If $\omega(s_1) \leq 3$, then set $e = (s_1^T, 0)$ and decode t to $c = t - e$ and STOP. (B)
- 3) Compare s_1 to the rows of B . If row i of B differs in exactly one position (say j) or two positions (say j and k), then:

Correct x in position j , or positions j and k ; Correct y in position i ; STOP. (C)

- 4) Compute $s_2 = [B | I_{1,2}]t^T$. If $\omega(s_2) \leq 3$, then set $e = (0, s_2^T)$ and decode t to $c = t - e$ and STOP. (D)

- 5) Compare s_2 to the rows of B . If row i of B differs in exactly one position (say j) or two positions (say j and k), then:

Correct y in position j , or positions j and k ; Correct x in position i ; STOP. (E)

- 6) Reject t .

- EXAMPLE Decode $r = (1000 \ 1000 \ 0000 \ 1001 \ 0001 \ 1101)$.

SOLUTION Compute $s_1 = [I_{12} | B] r^T = (0100 \ 1000 \ 0000)^T$.

Since $\omega(s_1) = 2$, we set $e = (s_1^T, 0)$ and decode r to

$$c = r - e = \underline{(1100 \ 0000 \ 0000 \ 1001 \ 0001 \ 1101)} \quad [\text{Check: } Hc^T = 0]$$

- EXAMPLE Decode $r = (1000 \ 0010 \ 0000 \ 1000 \ 1101 \ 0010)$.

SOLUTION Compute $s_1 = [I_{12} | B] r^T = (1011 \ 1110 \ 1011)^T$.

Then $\omega(s_1) > 3$. We see that s_1 differs in positions 6 and 7

from row 4 of B . So, we set $e = (0000 \ 0\underline{110} \ 0000 \ 0001 \ 0000 \ 0000)$
and decode r to $c = r - e = (1000 \ 0100 \ 0000 \ 100\underline{1} \ 1101 \ 0010)$.

Check: $Hc^T = 0$

$$B = \begin{bmatrix} 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 \\ 1 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} \quad 12 \times 12$$

NOTES (decoding algorithm for C₂₄)

- 1) The decoding algorithm only needs to store B (144 bits).
In contrast, a syndrome table has size $2^{12} \times 24 = 98,304$ bits.
- 2) Decoding is efficient and simple \Rightarrow good for hardware implementation.
- 3) C₂₄ was used in the Voyager space mission to transmit photos of Jupiter and Saturn to earth.

V4C RELIABILITY OF C₂₄

- QUESTION Is C₂₄ better than simpler codes such as the binary replication codes and the Hamming codes?

- Let p = symbol error probability, and $C = \{C_1, C_2, \dots, C_M\}$.
- Let w_i = prob. that the decoding algorithm makes an incorrect decision or rejects if C_i is sent.
- $P_C = \frac{1}{M} \sum_{i=1}^M w_i = w_1 = \text{error probability of } C$.
- $1 - P_C = \text{reliability of } C = \text{prob. that } r \text{ is decoded correctly.}$

$$(1) \text{ For } C_{24}, 1 - P_{C_{24}} = (1-p)^{24} + \binom{24}{1} p(1-p)^{23} + \binom{24}{2} p^2(1-p)^{22} + \binom{24}{3} p^3(1-p)^{21}$$

- (2) If no channel encoding is used, the prob. that a 12-bit message is transmitted with no errors is $(1-p)^{12}$.

(3) Suppose the binary triplication code T is used to encode 12-bit messages. Then $1 - P_T = [(1-p)^3 + 3p(1-p)^2]^{12}$.

(4) Suppose that a $(15,11)$ -binary Hamming code H is used to encode 11-bit messages. Then $1 - P_H = (1-p)^{15} + 15p(1-p)^{14}$.

p	$(1-p)^{12}$	$1 - P_T$	$1 - P_H$	$1 - P_{C_{24}}$
0.1	0.282429	0.711206	0.549043	0.785738
0.01	0.886385	0.996480	0.990378	0.999909
0.001	0.998066	0.999964	0.999896	0.9999999895
Rate	1	$\frac{1}{3} \approx 0.33$	$\frac{11}{15} \approx 0.73$	$\frac{1}{2} = 0.5$