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VSa Cvciic Coves

DEFINITION A sobspace S of Yn(P) is
cyelic i§ (Ge,0, -, An1) €S implies that
(Gn-ty Qo,Q4,...,AN-2) €T .

A cyclic code s a cyclic subspace
of VnCF).

NEXT GOAL:

An algebraic characterization of cyclic
sobspaces of Vn(F) as ideals of the
golnomial +ing R=F Lo /0-1).
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THE POLYNOMIAL RING R=F[x1/(x"-1)
‘Llek R= FLxl/(x™1) pheve F= & FCg). Than R is & emwmubtabive
"4"\3 (oot ok a Field smce ™\ is reductible ouver F).

* We have the fdlewing bijection between Vo (F) and €:
G= (a0,Q,,d3, ..., Qum1) < LX) = Aok @ XAQ2 X3 +-F+Cn 2L
* This bijection preserves vector additipn and scalat muc{:‘.p(i‘mbm :
I§ a,b€Vn(F) and A€F, then atb«7a@) 4+ bx)
and Ao <> Aalx),
* We can vse this bifection o define o natual mulfpliatibn on Vo (F) ¢

DEFINITION Let a,beVn(F). Then arb =¢c e Vin(F), whete
C <2 c(x) = qlx@) bOx) wod (™),




WHY CHOOSE =X"™~( AS THE MODOLUS TN R°
- Lek a=(ae,a,,... Bn-() EValF), and lef alx) be the associated
eo\‘.‘,nbmm\ in R. Then
LX) = Ot FADC 4---= +An-2 22" + At €
S Ra-y + QoL +A(X 4 -+ Anz X7 (mod 1)
<> (@n~, Q0,a,,...-,CGn-2).

*3s) molbaplication by x of a ?o('}wow\faﬂ in R corresponds o
a (right) cyclic SmfE of the asseciated vectorn Vi (F).

DeFINITION Let R be a finike comwutative vivg.
A non-empby sdbset T of R is an ided of R +f
(Ha,be T =2 a+bel |, and (ii) aeT,beR =7 a-bel.

EXAMPLE £0] and R ave (Erivial) ideals of R.
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THEOREM (aigebmrc chavacte rization of cyclic sobspaces of Vi (F)
Let S be a non-ewnpty subset of Vn(F), and let T be the set of
asSeciabed polynomials in R=FLxl/(o¢™). Then S is a cyelic
subspace of Vna(F) i§¢ T is an ideal of R,

PRoOOF (-_-"'?) Suppese S s a cyclic subsgace, of \n(F) . Since S is
new-emnpky and closed undet addition, se s T. New, let a@deT and

b (x) = botb,x+ -+ b X"'eR. Since S 15 o cyclic sobspace, x-atx)€eX.
Hence, octa()eT for all 0ZLsn-l. Since S is closed under scalac
mol&iplication , we have Vi oc"'a@c)“gl Soc all osign-t. Finally,

since S is closed vnder gddition, Zbi,:x"o @) = b(x)a)el.
Thus, T is an ideal of R. v

>



(=) Quppose T is an wdeal of R. Since X is aon-empby and
closed under a,d.ck'lésm) 5 S. Since T s closed undet moliplication
by coastant polynomials (ie, elements of F), S is closed onder
Scalar moliplicabion. Thus, S s a subspace of Va(F),

Fiﬂa\l«i , since [ 1S closed undet le{T'sPVtcaJGTOV\ by ¢, S is clesed
ondev +ight cyclic shifes. Thus, S is o cyclic sebspace. of- Vo®). O

Se, to study cyclic subspaces of Vn (F);, we proceed
Eo skody ideals of R = E <]/ (™).
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V5b TpeaLs oF R=F[x]1/(x"1)

DeFNiTIONS Leb R be a (§inite commokative) ving, and leb 36(?.
- Let <97 = 1g+ :+e R, Then <97 is an ideal of &,
colled the ideal genecated bg‘_g.
* An ideal T of R is principal if T =<97 for seme gel.
- R 1S a (‘JrlnCifml eleal fif\ﬁ, iF eve«'\/ deal of < is erincipad.




THEOREM R=FLxl/(x"-1) is a principal ideal +ing.

PROOF [et T be an ided of K.
‘4f T=1o%, then T =<o2,
*4¢ T #7508, then let g(x) be a nonzero polmomial of smallest
dcgrce in IT. (We nows show theb I=<3>.
Letk heI. wWe can write ‘r\C'x)%Q(x)qu)—kaI), where e Flx] and
dC}(+)<d€3C3'). Nows, h(x)) ,Q,Cx)gCI) ET im‘:\l(es that
h(x) -9 €T, So +GDeT. Bub deg(r)<deg(q), so ve must
have +() =o. Thus, hix)= ,Q(ac)%(x), so he<g?, TF\US) I£<C37,
Aod, Since 9eT, we have <g7<T. Thes, T=<97 O



NOTE Ta the previous proof, we can taRe g(x) to be monic,
{e. o ?olqnomlal whese tead»'mg, coefficient is 1. This is becavse
9 %C:r): Qo+g x4+ 9,2¢" €T where Je#o, bhen
Cg;‘%(—f.)z 99c’ + Qqpx +--+ xteI is monic.

DEFINITION Let T be an ideol of R= FLE1/(x"-1).
*ITf T=16, then ™ is the canonical geverator of T
*T¢ T#5{, then the monic pobnemial of swua(le&‘roiegnee
in T is the canonical genevator of T,

* The following theorem jusEifies Ehne qualfier Sthe” in the abwe
definition.

-{{o—
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THEOREM Let T be o nonzeto ideal of R=F[x]/(x")).

{)Tf\e(e 15 a unfcl'ue, MANC eé(y. 3@0 of sma((esl:degfce. n IJOM I=<?C'Dt')7,
2) 9(x) | (0 1 F] .

PRooF 1) Let 9, h(x) be monic polynomm(s o]C(H\C. same)smallest degree inT.
Then g@)-hx)eT, But deg(g-hkdc%%). Hence g(x)-h(x) =o;
So %Cx)=hC'x), This proves onigue ness of g.(x).

D Write x™( = {(x) g(x)+ +x), where L,¥ve FL=x] , deg (+) <oleg ).
Then +(x) = -)(Cx)%(x%rx"‘—l = —A)g0x) (mod ™).

Thosy +(x) €L =<97 ) and So we wmust have +(x)=0 since

ceg (+) < deg(¢) . Hence ¢(x) | (x™1). O
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THEOREM Let h(x) be a menic divisor of ="~ in FLx].
Then %) s the canonical generatot of T=<heOV.

PROOF * T§ hix)= o™=, then T =708,
+ Suppese Enak W0 Fao™I, so T # Lok . Leb gx) be the wenic pokmomial
of swallest dearce inT. Since ) 3enerabes T 5 we can write
%(:Jc) = alx) hex) mod(x"-) Sor some a(:c)eFEac], o(eg(a’)< n.
Hence, g(x)= alx) héx)+ L(x) (x™1) Sor seme [(x) € FLx].
Stnce. hex) L(x™1), we have hex) \3(36), So deg = o(ea(g).
But Aeg(g) < ot‘.a(h), So deg(g)-:- deg(h)-
Ftoally, since g and h are both wonic, we have §(x)=h(x).
Hence, h(x) is the canontaal encyator of <heD? O



COROLLARY There is a |-l corespondence between ideals of R and
monic divisors ol ' over F, and thus also a (-t correspondence
between Cyclic subspaces of Vo (F) and monic divisors of- x-( aver T

NOTE (menic diVisors Of— - ever F)

Let ™| = e|Cac) e‘P,‘c::c)e’:.-.- Pec:x)e“ be the Complete factorization
of X%\ over F, whee P, Pa,..., P are monic educible polmomials

in FCx], and €. 21- Then the set of all monic divisors of x2 over ¥ is

5 a
i A () 'Pz(x)'g---- ﬁ,c’z?Jze : 05—9.;56'.,}.

Hence, Ehe nombet of meonic divisors eff— - ever F s
Cer+1) Cear - (Cpt1).
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EXAMPLE Find all cyclic subspaces of V3(Za),
SOLOTION The comeplete factocizatton of- -\ over Za is
22— = (o) (et i),
So, the monic divisors of x|\ over Z3 are
q.(x1=1, GoG)=ocktl, QGzl)=xdx+l, Gulx)= Cer)aFxt).
Hence, V3(Z) has 4 cyclic subspaces.

CycLIiC SUBSPACE DIMENSION
<8 x)> = G, = {605, 001,010, 01,00, (0L, uo,m3=v3 (Za). >
<‘3sz)> = S, ={ooe, 1o, o011, 1014, 2
<33C9C)>: Sa = {009, \“f. 1
<qulxry= S = loood o




V5C Dimension AND A GM oF A Grcuic Code 177

THEOREM LeE g(x) be a menic divisor 8f ™ over  where ¥=GF(g).
Suppese deg(9)=N-R. Then the cyclic subspac S of Vn(F) Jenevuted
b\( q(x) has dunension R.

PROOF Reall bhat <g(x)y= jaG) 9(x) wed (x™) : L) eF[x], dzg(o%w?.
We claim that <_3(m)>={b®c)361) : blx) e FLx] deg(b)<\a§, To see
this, let h(x) = a(@)g(x) med (x™) for seme al(x)e FLLL, dey@=<m.
Then we con wribe alX)glx) = hex) + L) (1) for some £ (x) € FLx].
Since %CDC)\CSC“—I)) we hove 9(x) | h(x), so hx)=bx)g(®) for
some b(x)eF[x], deq(b)< k. This prowes the claim.

Finally sinee there ave c‘/R pelynemials of degree <R n Flxd,
<g(x)7 has size R, Thus, S hos dimension k. O
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EXAMPLE Coostroct & (7,4)-cyclic code over F=/a.
SoLUTION We need a monic dvisor of x7- over Za of degree 3.
Now, khe COW\Pl?(:E S—ao&oﬁZaHon e@ - ever 2, is

X7 = (x4 (C <>+ () (X3+ o ST 0.
Choese g = o441,
Theny C=< ’ac3+x7‘+|> iS5 a C?,A)-cyclu‘c, code over 2.

Let’s find a GM fs+- C- We need a basis fLor C, e. 4 linearly
(ndeperdenﬁ codf_mo(ds n C. _\ffe con cheese g(x), xq(x), ng(z),xgg(x)
bo%e(:’ LO 11l O 0 of<¢—glx)

= — xg(0) NoTE: C is systewntic
“— xX'g(x)
1——9:33&)




-

EXAMPLE (conbd) Encode the message = \ool.

G— m—

SOLUTION l 6t l oobo

c=wm& = [looi]|o 1o L 60| = (bi00IL,
©Colo Vo

odo ol |

o — om—

Egomalently, cx)= mG)g(x)
= (it 23 (Lt oc3)
= (P oCrxb
<> \olo0ll.
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A GM FoR A CYCLIC COoDE

THEOREM Leb q(x) be the canonical c}cnem&vr‘ of- an (nR)-cyclic

code C over F (so g(x)is a meonic divisor of X~ over F of f degree
n-R). Then o (nen-standad) G:M for C is %C:c)

= g()
G = f‘g(%)

__CX'.hi( %CJE)_ Rx%w

ENCODING Seorce messages are the pskmomials tn FLx] of degree <R.
A )= Mo+ M+ - + Mpy xRl F [x], then the en(_odina, of m
wvE & s ¢c= Y_‘mO,m(,...,W\p-\']G\: mogﬁo+m\:r3(x)+~--+mh_")(h"36c))
so | c(x) = M) %Cvc) .| Uneste: No reduction by o™ 1 is nceded]




—\q-
SO MMARY
. Vn CF) <R = FIx] /(™)
* a=(a0a,...,00-) EVa(F)€—7alx)= Qot &+ -+ AnX" e R

* C cyclic subspuce of Vin(F) <—%T ideal of R

. dwm(C) =R < 7 The. canomical 8?lmbbr' of T VLQS d-ea‘“&“’k-
v ncoding : c=mGx < 2= g0, where Gi=| 9@
x4r)
vsd _gcn"gg(x)‘ Rotv
. Cl s cyclic € 2 The. canonical generabor 15 W (7),

shere () = (xx™1) /g&x).

5
yoe 75(%) = 46) wed 3(7()

° Sadndmme w..b. o<
Parl.—(cn‘a.r' PCM

* MISSING: Distance of a cyclic code.
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VSd |elE DUAL CO'DE oOF A C\lcuc CoDde

+ Lek C be an (n,R)-cyclic code eue'f' F with canenical genevator 90

e let 3[7() C}°+glx+-~+mm -l- % -Rt) o~ A ‘Q‘\'\ ""+ﬂn—(1“;(
— — V-
-vbo =\ =0

DEFINLTION The pariby-checR Pol\/womla[ of C 15 he)= (=" l)/?(?ﬂ‘)

e Let he)= hot hact--+ hexR+ henat ek hn-.:x:":‘
(s [ _ —
£o0 =1 =0
v lek alX) = Qo+ Q2 +-- -+ B X" = %C-n') h(x) m@o\ (X))
Nete that a()=0 . Equating coefficents ef x ‘for 0L (S0, giles:
AL=0= %°h"+glh°‘ + - ""'%Lm*gcﬂhn ( *Yita hn-;.'\' +?V|4\h(f”.
« Thes, the vedtor §=(90,31,...,9n) is orthogenal to the vecter
h=C(hn-, bn-s,...., h, ho) and all its cyclic shifts.



A €CM FOR C

ad AR

* Tt follows that a\l cyclic shifts of 9 are orehogor\al te al( cyelic
shifts of h , where W)= ho-t tha-at+--+ hy ™3 ™% oot
* Recall thne follewing @M, for C:

—%o ‘3; qh’f‘! 0:--0
&=

© 9o 9 Gret GO

.. -;--?H‘l

—

—

Rxmn

H

e DEFINE :
hh heet------ ho 0----0
o hk hRet=-erho-=0

L d
-

0-----® hr hra---=hg
Cr-RxN

* From the above observation, we have G HT=o.
Thos, C’/ € C-L, where C’ is the cede 3cneml:ed by the rews of H.
But ranR(H) =n-R (since hr=() , so dim (C’)=n-R=dim(Ct).
Hence, c’= Ct, and | 15 a (pon-Standendd) PCM for C,




Ct s cyclic (@3-

DEFINITION Lek heA=hethix+----+ hrx® be a pekmomial of degree R
(So he £0). The recifnocal “ool&/r\omiaﬁ. Of héx) is

bR = xR h('%) = he+bhet 4 -4+ hxF 4 hox R
TE ho#0, we define We&) = h;‘ th'x). LW*) s montcj

THEOREM Lek C be an (n,R)-cyelic code aver F with cononical aensmw-h
%(70 Let hix) = (K“-()/g(?a Then Ct s eyelic, with canonieal 3enem6m- NG

PROOF We have ¢6Ih@E=%"1, so 3(%:) \n("dc):(’;.)v—’l. Wulkiplying both sides

by 2¢" gives x“"“%( %) 2R h(L) = -Cx™). Hence 9 &) hels)=- @),
So ‘np,('x)\(x“—t), Thus, W) is a menic divisor of x"-]. We squw on slide 12
that the (n,n-R)-cyclic code geverated by hrex) (and thus alse by h*(r))
s Ct. O



VEe Comeuting SYNDROMES
*Let C be an (n,R)-cyclic code over F with canonical gencrator '3(70.
*We will find & “nice’ &M For C.
) Find @ GM £or C of the form [RITg]

—~(Q3—

For os L=k, long division gives %mmi':ﬂm)g(ﬂi—ﬁ@), deﬁ(‘?'k”’k) dea&g')<k .
Then, "R g () = QE.(')Og(x) eC.
Thos, a GM for C 1S 0

G =

—ta )+ "R
-0+ (‘ DC'ﬂ‘~l2-?-l

)

L] ‘ _
~Te-y +1 " !
e 3 [ j —
n~-R R

NoTE ! yank(G) = R.

RXn

I

_x'\'-Rmed 9&)
_x'\"k""\ m°d9(79

| - QC“-( med 8(7()
—y

-k

=[RITH],

(2347



8) A (standard, §orm) PcM o C is H=[Tn-n [-RT].
Note Enat HT= I:In-k]) So the cows of HT (the cbmns of )

O—

~R

are ;x,o mMod 3C‘KB) x' med. 8(70,-...--) xn.‘mod. 8(70.

THEOREM Ccomfwéin% Syndvome S) The sxno(rome_ of- +eVin(F) w.t. the
above PCM is seVngr(F), where sG)=1(x) med ¢(x).

PRoOF  Let += (o, 17, t0-)eValF) . The syndome of + is s=Hrl
Hence 5(k)= (1o ¥ med 901+ [ x* enedk gGe) 1+ -~ [ X mecl 99
= (o dnx -+ 0. ") med gx)
= (%) med gC‘K). O




EXAMPLE  Censider the (15,9)-binary cyclic code C with canonical,

—(Q5—

}C‘f\emtb‘f' ?(x): M‘JC-I-‘JCEI'DC?"!-‘.'IG COW\PU‘:C Ehe_ 580(‘,\’0{)‘]6 of} "':(‘(OO (600 (WO OOO‘)'

o4 4o px T 1‘5:02

2,
>+ 5 it | ) ey o P ot
¢ D

9Cx) X' 4ot 84 Pt
q
ot xSy x ey

o & € + o oy

xﬁdﬁ+f%xﬁxﬂ
P4 xSt a®

ot + By Pt
o 4 oA 23
SO) ——P oy g x4

Hence, S= 10011,

(DOHIOLLLOOOLOOH
OO Vv L

Litvil oo0tl
loo1Ly L

Ltoo 1o ]
Loo L\ LI

1O yoo! 1|
ooV 1LL ]

Vi ol
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¢ The. sgndvowes of a vector and i€s cyclic shifts ave closely velated.

THeOREM et TeVn(F) with sqyndvome polnomial S&)= St Sy x-St
The syndvome of +-6x) is () 2CSCx), if Seo-e-t =0
A
cyclic shiftof + Ri) 2¢s(%) =Sn-k-l 3(?‘), i§ Sn-kR-1 FoO.

Not cyclic shigts

PRoOF Since +6) has syndrome s, we hawe +Cx)=0)gxX)+SkK) for Some

Qe Flx]. Hence, act+bd= xL(X)g0x) + x56x), Since 96| x™M), xr6x) ad
X(x) mod (@) leave Lhe same remainder upen division ny g(n).

(NI Sn-k-1=0, bhen deg(S)<m-R-1, so deg(xs)<m-R. Hence, xsCx) is the
Cur\ique) t+emainder opon divfo(a'na, x4+(%) by 3(?{),

(i) ﬁg Sn-r- #0, then x(=) = xlﬁs)g(?f)r:ISGc')-Sn-R—lg(K) 4+ Sn-tle— 8{70
=[2G+ Smkaag(ﬁ) + EECS(K)—S:i—qg(?Q] . Netice that deg(S)<nk
so S(x) is the unigre temainder 807) upon dividing x+(x) by 9®). O
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3o, given the syndrome s of +, we can eaS'(l\J, cowpute bhe
Sgodome 5 of cyclic shigts of +-

* EXAMPLE (cont(huiﬂg, the example on slide as)

ngc)=x‘+nc"'+ L2t < oot 1= 1100 1000 wio ooo, S=100MY,
Sc(x)= Sﬂn&m ol oc* + (%)

loof]

o\ st OIOOll|
lo(otl\lllloo|
lo 10061 lO“H}BQ
o1 600

ke

ololep
Colelo
0oo e |

\..“G\U\-L\L»\I\J—O‘

LS N J



—a8—
VS‘Y' BursT ERroR CoRRECTION

* Cyclic codes ave good for correcting burst errorS.

DEFINLT(ON Lek ceVnCF). The cyclic burst length of e is the (enaf:ﬁ of
the shocEest crelic bleck of € that cantains all iEs nenzevo cdmpunents.

EXAMPLE The cyclic borst lengéh of c=ollolse0l0 is 7.

DEFN(TON A lvear code Clis a E-cyclic burst enwot correcking code
if all cyelic burst enors of [ena{:k <t ave in different cosets :_(1‘ C,
(e. have different Sgnolrovnes. The (owﬁcs& such b is colled the
cgc.\ic. burst evror c,or*redn'ng Ca‘PGbS(fey of C.
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EXAMPLE 3(&) =5 Pzt is the canonical generator Joc @ (15, 9)- binery ayclic
code C. In fact, C is a 3-c¢yclic burst ecror correcting. code. To checR this, we

vecify that all Cycli‘o busts of (e«r\il <3 have cl,tﬂ—‘ereng ndrtmss
'c w

bk wver Syndrome. m tabien busk Syrot Syndrome ey tabion
Z o(lo
o wese o |z o oul A
x° o OO066 32 U RRT-Y-R 57
! OlecooD 16 L+2C L\ 0000 L8
x? 0oLlB 0D Q ocC20) O\ 10060 au
x3 ooodloe L : : .
x4 oseoole 2 o40+x) ol as
~x5 o0ooo0ol l \+ Xtx s L1l ®00 56
x$é JjLLloo0 60 xC\y3c+x‘) oiL160 as
x* ottio 30 “r: _ ’
x® oot \5 > 4(Haxtx”) eolecl 9
x9 Lviotl 59 [ = 101000 L0
' L0 006 | 23 QCC\:)-gc”") 0\0’1 00 ao
I . : ]
x o1 o0 L4 U143 o166 | L
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EXAMPLE q(x) = ¥t xP+xc4+x+1 is the canonical geneabor for- a
(i5,#)-binary cyclic code C. Cis a s-cyclic borst e«ar-cmect'ma, cod€

THEOREM (bourds on £, Lhe cyclic burstenoe a;rreol:'mg, capability of C7
Let C be an (n,R,d)—code over F=GFg). Then [(d-)/3 | < £ <mn-k,

PRoOF ¢ Recall that Ehe vectors of weight = Led-2/a] \ie in differmnt cosets
of C. Tn partiavlar, all cyclic burst emors of [ength = Ld-D/a ) (e in
difforent cosets of C. Thes, t 2 L(d-0/a .

* No two ¢yclic bust enors af lengﬁ"\ =k lie 'm the same coseb of C.
T parbicolor; no two vectors in which all the nenzew components
are in the first & coodinate positions can liein the 7777/ 600
Same. cosek of C. Since there are qF such vectors and

9 "R cosets ) we must have qy“ < q,"’h, ktlence, E<N-R.
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V8a Deconing Avc. or Cycuic BuersT ERgor CorrecTing CoDeS

*Leb C be an (n,)R)-cyclic code over F with canonial 8enem{:oi' 8(70.
Lleb £ be the ¢yclic buvst emor wrreding capability of C,so t<n-R.
+ Recall bt H=[Tarl-R7) is a standard foxm €CM for C.
The sgndorome of TeVa(F) w.ct. this PCM s s(K)=+&) med 3(7‘7.

* LTDEA OF DECODING ALGORITHM Souppese the eror vedfore is a oelic
burst of length <. Then, some cyclic shift of e, say Ci<>xet),

has all (s nonzero cgmronenbs (n Ehe
;Fim(: W-R coodinate ?osdsiov\s.

Then St = He{ has  (non)-¢yclic bursE
lev\gkk <t, and oc=(S¢,0) sakisfres

c
e

<t
A

N

Z7Z

—~~
<t

HocT=%i. Thus, €i=(S¢,0) and elx) = ™" @ (x).

—

<«n-R=7
% €

[
=)~
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QOESTloN How to comeubc S:¢ Lek 4= cte, So :)c,"'v"—or.e = C€C
Thos, 2C°F and. x‘e have the some sgndrome . So, we. compute Syndromes
of Ti € X+6) for osign-l.

ERROR TRAPPANG ALGOR\THM FOR CYCLIC BURST £RROR CORRECTING CsSDBES

‘Let + be the teceived wod. CORRECTNESS
~Fo~c- L—}mw; o to -\ de: IS the emt veckr js in
. ComPo(:'C. 3.(xX), the Syndrome o€ ocC+(x). ¢act a cyelic borst ecror
Tt S.,C_z) has non—cyclrf: bovst length <k then | of len@l;h Sk, then the
Let e(x)= 2" “(5:, o). algocithm wil moke ghe.
DeCoole + to c=4-c and STOP cevveck decision.
M Re Je‘:& i
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EXAMPLE Recall thak 3@()‘—' S+ oyt is the canonicol Wﬁo‘(%r Q

(15,8) binery cyclic code with cyclic burst erat correcting, capaility £=3.
Decode T=tiio (11O (106 000 U'sing_ efrotr —l:,(aFP'mt},

SolLoTION

_gc(;\\JO\U'\,L\UJRJPO|P’

Si &)= syndrome of P

1001l ¢ S(x)=+6) med 9(x)

(ool of
lo(LIO
OflolLl

o ltl
ool

o\l

Lol ot bust of
o tool ‘ lengeh <3

Lolooo

*So, e(x)= o Sq(x)
= xé itz ?)
= 0000 00(0 (1000 0606,

e Decode + to c=t-e

—-—
—

IWio j1oo Ol06 660

* Check: 90 .
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TNTERLEAVING

PURPosE: Lncrease the cyclic burst error correctrg capability of a code
‘Let C ke an (0,R)-code with cyclic borst ecror correcﬁng, capabiliby t.
SOPPOS& C= CCu, Cia,.-m-, Cin) € C)
Cz = (cay, C":.z,.-», Can) € C'
Cs = (Cs1, Css, . ..,Csn)eC.
* Lokerleaving to a depth s Tnstead of sending C(,C2,..-,(s in that
order, tvansmit the columns of Ehe above army:

c¥= (Cu, Cay, ..., Csy, | Cia,Caz, .--,Csa,l...---,lcm,CQ.n,. ..)Csn>,

Then, any cyclic bovst eoor of length < SE in c* cesolfS in cyclic
borst erors of length <€ in each of the origmal codewords
C‘) Ca .-, Cs Cand these errors can be COrrecI:eoI),
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THEOREM, (in(:er(.ea.vilf\%) Let C be an (nR)-code ovexr F wibth cyclic burst enor-
Correc&ing, copabiliby £. Leb C¥ be the code obtained by interleaving
C Eo a depth s,

) C* is an Gas,Rs)- code. over Fwith cyclic burst enot cwceoﬁifg, capabiliby £
2) Suppose C is cyclic with canonical }er\er'a,(:'o? %C‘JC)-
Then C* s cyclic with canonical generabm* %Cx’)_

PROOF (sketch) 1) Shew that C¥ is a veckor sobspa, has length ms, size ﬁm

(so dimergion RS), and cyelic burst evor cowvecting ts .

2) Shew that §(x*) is & monic divisor of o2 of degree ns-ks, and that-
%CCCS) ‘c,*‘ (x) Lor all ceC* o

EXAMPLE (cf. slide 133) g(m‘”) = oc8%% o3+ 2% %1 s the canonical

%enerabm- of a (1500, ‘loo')"b\nar\{ cyckic, code wlth cyclic burst ermr

corvecting capability £=300.




