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V5ACLICCODES

DEFINITION A subspace S of UnCF) is Codes

cyclic if (ao,a, ..., an-1)ES implies that

(An-1 ,
90, 91

, ...,
an-2) ES. Block codes

A cyclic code is a cyclic subspace Linear codes
of Vn(F) . cyclic Codes

BCH Codes
NEXT GOAL : RS

codesAn algebraic characterization of cyclic

subspaces of Un(F) as ideals of the

polynomial ring R = F(x]/(x"-1)
-
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THE POLYNOMIAL RING R = F[]/(xcY-1)
· Let R= F[x]/(xY- 1) where F = GF(q) . Then R is a commutative

sing (but not a field since ec"-1 is reducible over F).

· We have the following bijection between Un(F) and R :

a = (90
,91 , 92

, ...,
an-1) < -> a(x) = 90+ a

, x+92x+ .. -+An-1x!
· This bijection preserves vector addition and scalar multiplication :

If a,
beUn(F) and xEF,

then a+b>a() + bb)

and xa -> a).
· We can use this bijection to define a natural multiplication on Un(F) :

DEFINITION Let a
,
beVn(F) . Then a .b= eVn(F)

,
where

<-> c(x) = a(x) - b) mod(x"-1)
.
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WHY CHOOSE 1 AS THE MODULUS IN R ?

Let a= (ao
,
9, ...,An-1) EVn(F) ,

and let a(x) be the associated

polynomial in R. Then

x.a(x) = 90x + a, + .... - +an-2x
"*

+ An -1x
= an- 1 + 90x +9 ,

3+ .... + An-zx" - (modx-1)
-) (An-1 ,

90
,
G, . . . .

,
An-2).

· So
, multiplication by x of a polynomial in R corresponds to

a (right cyclic shift of the associated vector in Un(F).

DEFINITION Let R be a finite commutative ring. RobA non-empty subset I of R is an ideal of R if

(i) a,bEl => a+bEI
,
and (ii) aEl

,
beR= a bEI

.

· Ch

· G b

EXAMPLE [03 and R are Strivial) ideals of R.
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THEOREM (algebraic characterization of cyclic subspaces of Un(F)
Let S be a non-empty subset of Un(F) , and let I be the set of
associated polynomials in R= F[x]/(x"-1). Then S is a cyclic

subspace of UnCF) iff I is an ideal of R.

PROOF (7) Suppose S is a cyclic subspace of Un(F) .
Since S is

non-empty and closed under addition ,
so isI. Now

,
leta El and

b(x)=bott -. -+ bn-1x
* ER

.
Since S is a cyclic subspace, .a(x)EI.

Hence, a) EE for all o in-1 . Since S is closed under scalar

multiplication , we have bixia) El for all xin-1 . Finally,
since Sis closed under addition, bixia ) = 6) El .

i=

0

Thus
, I is an ideal of R .

A
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(E) Suppose I is an ideal of R .
Since I is non-empty and

closed under addition
,

so is S
. Since I is closed under multiplication

by constant polynomials (i.e., elements of F) ,
S is closed under

scalar multiplication. Thus
,
S is a subspace of Un(F).

Finally, since I is closed under multiplication by , S is closed

under right cyclic shifts. Thus, S is a cyclic subspace of Un(F).

So, to study cyclic subspaces of Un(F) , we proceed
to study ideals of R = F[x]/(xc"- 1).
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DEFINITIONS Let R be a (finite commutative) ring ,
and let ge R.

· Let <g) = EgriER] .
Then <g) is an ideal of R,

called the ideal generated by g.
· An ideal I of R is principal if I=g) for some ge I.
· R is a principal ideal ring if every ideal of R is principal.
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THEOREN R = F[x]/(xY-1) is a principal ideal ring..

PROOF Let I be an ideal of R.
· If I= 203

,
then I = 07,

· If I# 50] , then let g() be a nonzero polynomial of smallest

degree in I . We now show that I=<g).
Let hel

.
We can write h(x) = l (x)g()+r(x), where , EF[x] and

deg(v) < deg(g) - Now,
h()

, ((x)g() EI implies that
h(x) - 1(x)g(x) El , so El. But deg() <deg(g) , so we must

have ( =0. Thus, h(x) = 16) g(x) ,
so he<g) . Thus, I <g).

And
,
since ge I, we have 97I .

Thus, I= <g).
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NOTE In the previous proof, we can take g() to be monic,

i.e. a polynomial whose leading coefficient is 1
.
This is because

if g() = go+g + ... . + gx
+ El where to, then

g= g(x) = g0gt + g ,gl + ... - + xtEl is monic.

DEFINITION Let I be an ideal of R= FC/(xc"-1).

·fGo, then isthe canonicalgeneratorotegree
in I is the canonical generator of I .

· The following theorem justifies the qualifier "the" in the above
definition.
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THEOREM Let I be a nonzero ideal of R = F[x]/(x1)
.

1) There is a unique monic poly.g(x) of smallest degree in I
,
andI=<gD)·

2) g(x)/(x"
-1) in F[x]

.

PROOF 1) Let g(x),h(x) be monic polynomials of (the same)smallest degree inI.

Then g()-h6El . But deg(g-h) < deg (g) . Hence gp-h(x) = 0
,

So g() = h(x). This proves uniqueness of g().

2) Write 1 = ((x)g(x) + r(x) ,
where SF] , deg (v) <deg(g).

Then r (x) = - l(x)g(x) + x"- 1 = - 1(x)g(x) (modx
= 1)

.

Thus,() El=g) ,
and so we must have ()=0 since

deg(r) < deg(g) . Hence g()((oc"- 1).
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THEOREM Let h(x) be a monic divisor of -1 in F[x]
.

Then h(x) is the canonical generator of I= <h(x))·

PROOF · If h() = x"-1
, then I = 50].

·Suppose thath) 1
,

so I [03
·
Let go) be the monic polynomial

of smallest degree inI .
Since had generates I, we can write

g() = a(x)h(x) mod(x"- 1) for some a()F[x]
, degla .

Hence
, g(x)= a(x) h(x) + l(x)(x"-1) for some (() EF[x] ·

Since ha)((x)
, we have ((g() ,

so deg (h)=deg(g).
But deg(g) deg(h) , so deg (g) = deg(h)-

Finally,
since g and hare both monic

,
we have g(x) =h(x) .

Hence
,
h() is the canonical generator of(h).
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COROLLARY There is a 1-1 correspondence between ideals of R and

monic divisors of -, over F
,
and thus also a 1-1 correspondence

between cyclic subspaces of Un(F) and monic divisors of 1 over F.

NOTE (monic divisors of ec"-1 over F)
Letx ) =

p ,() p(xe? .... p(x)et be the complete factorization
of -1 over F

,
where Pipe ...., Pt are monic irreducible polynomials

in F[]
,
and it, 1 .

Then the set of all monic divisors of x1 over F is

&P,
(x)
+ P2(x)?... P00ft : Office:] .

Hence
,
the number of monic divisors of -1 over F is

(e,+1)(ez+1) .... - (et+ 1) .
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EXAMPLE Find all cyclic subspaces of V3(2).
SOLUTION The complete factorization of -1 over 2 is

x3- 1 = (x+1)(x+x+ 1).

So, the monic divisors of -1 over 2 are

9) (x)= 1
, 92(x) = x+1

, 93(x) = x7+x+1
, g4(x)=(+1)

=
x+1) .

Hence
, V3(2) has 4 cyclic subspaces.

CYCLIC SUBSPACE DIMENSION

< g , (e) = S ,
= 2000, 001

,
010

, 011
,
100

,
101

,
110,

1113 =V3(2)
.

3

<g2(x)) = Sc = 2000
,

110, 011
,
1013. &

(93(x) = 53 = 2000 , 1113. =

<94(x)) = Sp = 20003 O
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THEOREM Let g(x) be a monic divisor of x 1 over F
,
where F=GF(g).

Suppose deg (g) =-R. Then the cyclic subspace S of Un(F) generated
by g() has dimension R.

PROOF Recall that <g()) = [a6)g(x) mod(x"-1) : a bcEF(c)
, deg(a)<n3.

We claim that<g(x) = [b)g() : b) eF[x]
, deg(D) R3 .

To see

this
, let h() = a (x)g(x) mod(x"-1) for some a()EF[], deg(a)<n.

Then we can write a (x)g(x) = h(x) +1(x)(x"- 1) for some (()EF[x) ·

Since g(x)/(x"-1) , we have g()(h(x) , so h(c) = b(x)g(x) for
some b()Ef[x]

, deg (b) < R
.
This proves the claim .

Finally since there areqP polynomials of degree <Rin Fx],
< g(x)) has size qb .

Thus
,
S has dimension .
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EXAMPLE Construct a (7
,
4) -cyclic code over F=

2.

SOLUTION We need a monic divisor of 7-1 over 2 of degree 3.

Now ,
the complete factorization of x7-1 over 2 is

x7- 1 = (x+1)(x3+x+17(x+ x7+ 1) .

Choose g(c) = x3+
2
+ 1 .

Then C=<x+c+1) is a (7,4)- cyclic code over 2.

Let's find a GM for C . We need a basis for C, i.e. 4 linearly

independent codewords in C .
We can choose g(x), xg(x), g(x), g(x)

-

-

1011000 g(x)to get
G = 0101100 g(x) NOTE : C is systematic-u &

-0010110 g(x)
000 10 11 * x3g(x)

L -
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EXAMPLE (contd) Encode the message m = 1001.

- -

SOLUTION 10 1100 G

c = mG = [1001] 0101100 = 1010011
.

0 0 1 0 1 1 0

0 & 0 1 0 I
L -

Equivalently, C(x) = m(x)g(x)
= (1+ x3)(1+x2+x3)
= 1 + x?+ Cc5+ x6

-> 1010011 .
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A GM FOR A CYCLIC CODE

THEOREM Let g(x) be the canonical generator of an (n,R) -Cyclic

code Cover F (sog() is a monic divisor of 1 over F of degree
n-R). Then a (non-standard) GM for C is

-

g(x)
-

xg(x)
G = g(x) ·

ckg( ken
-

ENCODING Source messages are the polynomials in Fx] of degree <R.

& m()= Mo+m,x+ .... +Mr-x
**EF[x]

,
then the encoding of m

w
.
r. t. G is c = [mo

,
m ,

, ...,Mr-1]G =mog) +m,xg(x)+ ... +Mp+
x g(x),

so <(2) = m()g(x) - [NOTE : No reduction by -1 is needed.)
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SUMMARY
⑧ Vn(F) E >R = F[x]/(x"-1
·

a= (a ,
a, ..., An-1) EVn(F)< a(x)= Ar+a,

x+ ... - + an-
" ER

· C cyclic subspace of UnCF) > I ideal of R
O dim(C) = R < - The canonical generator of I has degreen-R .

-

O Encoding : c =mG < 7c(x)= m(x)g(x) ,
where G= g(x)

xg(x)
-

V5d
R+ g(x) -Rxn

O C +
is cyclic < &The canonical generator is n* (x)

,

where h(x) = (x"-1)/g(x).
v5e

· Syndrome w .r.
t. < >S(x) = (x) modg(x)

particular PCM

· MISSING : Distance of a cyclic code.
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V5 THE DUAL CODE OF A CYCLIC CODE
· Let C be an (n

,R)-cyclic code over F with canonical generator g().
· Let g(x) = go + g , x

+ .... + Gn -Rxh
- R

+ gn- R+ xn
- R ++ .. . - + Gn-x!

- --
-#O - L = O

DEFINITION The parity-check polynomial of C is h()= (x"-1)/g(x) ·

· Let h(x) = ho+ h ,x+ - ... + hrxk+ h+ xk
+

+ .. . - - + hnxht)
.

u --
#O => I => O

· Let a(y) = Go+ a , x + .. .. + an- x"
+

= g(x)h(x) mod(x- - 1) .

Note that a (x)= 0 . Equating coefficients of "for On-1, gives :

ai = 0 = Gohi + g , hi+ .. - +Gho +Githn - 1 +gi+2nz + ... + Gn- hi t
.

· Thus
,
the vector g = (go ,Gl , ..., n-1) is orthogonal to the vector

(hn-1
,
hn-a, ... ., hi, ho) and all its cyclic shifts .
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A PCM FOR C

· It follows that all cyclic shifts of g are orthogonal to all cyclic
shifts of 5 ,

where (x) = kn-1 + hn-2x+ .. - + 120 n-3
+ h ,xh -=

+ho!
· Recall the following GM for C : · DEFINE :

-

- -

go g, .... Gn-k 0 .... 0

↑

h ..... . ho0 ....c

G=

0 go 9 ,
... Gn-R- 1 Gn-k= O H =

0 hR hR+ - - - - ho - -- . o

000 : b : 8 &

· 0 ...... Go G, ... ---Gn-R ↑
0......0 hr hr+ ----. ho

- -
RXN -

-

(n-R)xn
· From the above observation , we have GHT= 0

·

Thus
,
C'EC+

,
where C' is the code generated by the rows of H.

But rank (H) = n-R (since h= 1) ,
so dim(C) = n-R=dim(C).

>
Hence, C'= C+ ,

and H is a (non-standard) PCM for C .
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DEFINITION Let h(x) = hoth ,x+ .. .. + hRxk be a polynomial of degree R
(SohR 0). The reciprocal polynomial of h(x) is

hR(x) = xkh((x) = hr + hR - x + ... . +hix+ hoxP

If no O, we define h
*() = hhp(x) .

[h*(x) is monic]

THEOREM Let C be an (n ,R) -cyclic code over F with canonical generator
g(x) . Let h(x) = (x#

1)/g(x) · Then C
+
is cyclic ,

with canonical generator h
*

(x)
.

PROOF We have g(x)h(x)=x- 1
,

so g() h() = (5)
*

1. Multiplying both sides

byx gives xh
Rg())xPh(!) = - (xk- 1)

.
Hence GR(x) hR(x)= - (x+ 1)

,

so hr(x)/(x-1) . Thus,
h*(x) is a monic divisor of x"-1 . We saw on slide 121

that the (n
,
n-R)-cyclic code generated by hR(X) (and thus also by h

*(X)
is C+.
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V52 COMPUTING SYNDROMES
· Let S be an (n,R)-cyclic code over F with canonical generator g(x) .

·We will find a "nice" PCM for C .

1) Find a GM for C of the form [RIIR] .

For Ry
, long division gives

-R+ (i) g+), de(ii)-R, deg(ei) R.
Then, xn-R+ i

- pi(x) = li(x)g(x) E C.
Thus

,
a GM for C is :

-

- ro(X)+ xn
-k

- --Rmod g(x)
-

G =
- r(x)+ x n

- R+
= - xch-R+ modg() IR = [RIIR]

.

-

:

↑
:

D

-

C

:

-

- To- 1 (H- 1
-2n

- 1

modg(x) RXN
u -Rxn --
n-R n-k R

NOTE : rank (G) = R.
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2) A (standard form) PCM for C is = [In-R1-RT]
.

--

Note that HT=Inm ,
so the rows of T (the columns of 1)

-

are xomodg(x), modg(x), . . . . .

.,

*
mod g(x).

THEOREM (computing syndromes) The syndrome of rEVn(F) w.r.
t . the

above PCM is SEVn-R(F)
,
wheres(X) = r(x) modg(X).

PROOF Let V= (5o
, ,. . . .,

n +1)EVn(f) .
The syndrome of is S=Hrt.

Hence s(X) = [roxmodg()] + [5, x 'modg(1]+ .. . +[in+ x " modg(x)]
= (o ++,x+ -. .. + (n-1

h-) mod g(X)
= v(x) modg(X).
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EXAMPLE Consider the (15
,

9) - binary cyclic code C with canonical

generator= ! Compute the syndrome of r= (1100 1000 1110 000).

SOLUTION r(x)= 1 +x+ x++ x8+x+ x!o
.

+ 2 +x +xx4
-

3 2.

r
>(+c+x2+x+1)x+x+ x8+ x4 +x+ 1 1001111) (1100010011
- 10

g(x) x +x7+x +x+x4 100111/

"+x8+x7+x+x+x+1 116110001/

ec + x) +x+x+
+x 10011

x8+ xt+ x
+
+x+x+ 1 100 1 101 /

x8+x5+x4+ +x 100111

x7+ cc5+x+x+ 1 1010011/

x7+ x4+33+x+x 100111I
S(y)-x+x4 +x3+ 1 11100

Hence
, S= 1001 /I .
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· The syndromes of a vector and its cyclic shifts are closely related.

THEOREM Let reVn(F) with syndrome polynomial S(X)= SotS,x+...Sn-R-13
- R=

The syndrome of xr(x) is (i)S(X) , if Sn-R- 1 =0

* *

->Cyclic shift of a (i)S(X) -Sub-1g(), if Sn-R-10 .

-
not cyclicshifts-

PROOF Since ~(2) has syndromes(X) , we have r(x)= 1(x)g(x)+S(x) for some

EF]· Hence, () = x()g() + xS(x)
.

Since g(x)/(x-1) , ecrb) and
<cr(x) mod (x-1) leave the same remainder upon division by g(x).
(i) If Sn-R-1 = 0

,
then deg(s)< n-R-1 ,

so deg(s)<-R .
Hence, xs(x) is the

Cunique) remainder upon dividingcr(x) by g(x).
(ii) If Sn-R+ #O,

then Ccw(x) = x((x)g(x) + xs(x) - Sn-R- g(x) +Sn-R+ g(x)
= (xl(x) + Sn- R-1g(x) + [S(x) - Sn-R- g(x)]

.
Notice that deg(5)< n-R,-

so 5(x) is the unique remainder
5(X)

upon dividing xr(x) by g(x) .
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· So
, given the syndrome of J

,
we can easily compute the

syndromes of cyclic shifts of r.

· EXAMPLE (continuing the example on Slide 125)

g(x) =x+x+x+x+ 1 > 1111001
,

V= 1100 1000 1110000
,

S= 100111
.

i Si(x) = syndrome of xir(X)
O 10011I

↓ 1 0 1 / / 010011/

2 10101·11/100
3 101001 10066

101000

↳ 010100

6 001010

7 00010 I

: 8
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V 5F BURST ERROR CORRECTION
· Cyclic codes are good for correcting burst errors.

DEFINITION Let eeVn(F). The cyclic burst length of e is the length of
the shortest cyclic block of e that contains all its nonzero components .

EXAMPLE The cyclic burst length of e = 0110100010 is 7.

DEFINITION A linear code Cis a E-cyclic burst error correcting code
if all cyclic burst errors of length It are in different costs of C,
i.e. have different syndromes. The largest such t is called the

cyclic burst error correcting capability of C .
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EXAMPLE g() =+ ++ ) is the canonical generator for a (15
, 9) - binary cyclic

code C .
In fact, C is a 3-cyclic burst error correcting code. To check this,

we

verify that all cyclic bursts of length 3 have different syndromes.~

Cyclic T Cyclic T
Syndrome-nteger -ntegerburst error representation burst error Syndrome representation

x12 01 0110 22
O 0000 G O x13 00101 1)

O 100006 32 14 111001 57

ech 010000 16 1+x 110000 48

x
? 001000 8 x(1+x) OL1000 24

x3 000106 4 i Y i

x4 000016 2
x(1+x) 011001 25

x5 00000 1 + x+x 111000 56

G 11/100 do x(1+x+ (2) 011100 28

:
011110 30

CCg 00111/

Ba
x(x+xz) 001001 h

x9 11101 1 +x? 101000 O

x1o 100001 x((x2) 010 , 00 20

X
1)

101100 ↳4 x((1+x2)
: !

101001 41
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EXAMPLE g(x) = x8+>
+C+C+ 1 is the canonical generator for a

(15
,

7) -binary cyclic code C .

C is a 4-cyclic burst errorcorrecting code.

THEOREM (bounds on t, the cyclic bursterror correcting capability of C7
Let C be an (n , R,d)-code over F=GF(g). Then L(d-/2/ = t =-R

.

PROOF · Recall that the vectors of weight = L(d-1/2) Lie in different cosets

of C.
In particular, all cyclic burst errors of length = L(d-1/2) lie in

different cosets of C . Thus
,
+ >L(d-1/2 J.

· No two cyclic burst errors of length &t lie in the same cost of C-
In particular, no two vectors in which all the nonzero components

are in the first t coordinate positions can lie in the YIIIIIIII, 00..... 0

-
same coset of C . Since there are at such vectors and t

qn-R cosets , we must havet qn-r. Hence, -R.
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V5 DECODING ALG
. FOR CYCLIC BURST ERROR CORRECTING CODES

· Let C be an (n, R)-cyclic code over F with canonical generator g(x).
Let t be the cyclic burst error correcting capability of C,

so tn-R-

· Recall that H = [In-R1-RT] is a standard form PCM for C.

The syndrome of WEVn(F) w .r.t
.
this PCM is s(x)= r(x) modg(x) .

· IDEA OF DECODING ALGORITHM Suppose the error rectore is a cyclic

burst of length Et . Then
,

some cyclic shift of e
, say e: (x),

has all its nonzero components in the St
M

first n-R coordinate positions. e =
-x

c-n- R->
-
-Then Si = He has (non)-cyclic burst C - >Xi Ci

e -

length = t ,
and x= (Si

,o) satisfies =t t

HxT = Si . Thus, ei = (5i,0) and e(x) = xch-i ei(X).
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QUESTION How to compute Si? Let = +, soci-x =xicEC
.

Thus, xir andxie have the same syndrome. So, we compute syndromes
of : xir(x) for On-1.

ERROR TRAPPING ALGORITHM FOR CYCLIC BURST ERROR CORRECTING CODES

· Let & be the received word- CORRECTNESS

· For i from o to -1 do : If the error vector is in
-

· Compute Si(x) , the syndrome of x(x). fact a cyclic burst error

· If Silx) has non-cyclic burst length then of length St
,
then the

-

Let e(x) = xn
-:(Si

,
0). algorithm will make the

Decode & to C =-e and STOP. correct decision.
-

·Reject ~.
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EXAMPLE Recall that gob=++x+ 1 is the canonical generator for a
(15

,
9) -binary cyclic code with cyclic burst error correcting capability = 3.

Decode W = 111011101100000 using error trapping .

SOLUTION

a Si(x)= syndrome of xis (x)
O 110011 #S(x)= r(x) modg(x) ·So , e(x) = > (

15- 9
Sq(x)

I 100 10 =x(1+xz)

2 101110 = 00000010 1000 000.

3 0101 I · Decode to C =V-e

↑ 110/II = 111011000100 000

10011I

6 1011II · Check : g(x)(c(X) ·
7 10601/ burst of
go 101001 length = 3

9 101000
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INTERLEAVING

PURPOSE : Increase the cyclic burst error correcting capability of a code.

· Let C be an (r ,R)-code with cyclic burst error correcting capability t.

SupposeC,
= (ii

, Cre, . . . .

., (in) EC S

(2 = ((21
,
(2z

, ...., (2n)E C
!

S

Cs = (CS1
,
Cs2, ....,

Csn) EC.
· Interleaving to a depth s : Instead of sending <,

<2, ..., Is in that

order
,
transmit the columns of the above array :

(
*

= (C) ,
(a)

, . . ., CS1, a(22, ...., (52) ... . . - Cin
,
Can

....,Csn).
Then

, any cyclic burst error of length St in * results in Cyclic
burst errors of length It in each of the original codewords

C
,

<2, ..., Cs (and these errors can be corrected).
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THEOREM (interleaving) Let C be an (n ,R)-code over F with cyclic burst error

correcting capability . Let C
* be the code obtained by interleaving

C to a depth S.

) C*
is an (ns,Rs)-code over Fwith cyclic burst error correcting capability S.

2) Suppose C is cyclic with canonical generator (C) -

Then C* is cyclic with canonical generator g(s) .

PROOF (sketch) 1) Show that C* is a vector subspace , has length us
,

size grs
(so dimension Rs) ,

and cyclic burst error correcting to

2)Show that g(x) is a monic divisor of x* of degree ns-ks, and that

g(xs)(c* (x) for all C*EC*.

EXAMPLE (cf .
Slide133) g(((100) = x

600
+ >300+ x 200+ x100+1 is the canonical

generator of a (1500
, 900) - binary cyclic code with cyclic burst error

correcting capability t = 300 .


