

V5a CYCLIC CODES

DEFINITION A subspace S of $V_n(F)$ is cyclic if $(a_0, a_1, \dots, a_{n-1}) \in S$ implies that $(a_{n-1}, a_0, a_1, \dots, a_{n-2}) \in S$.

A cyclic code is a cyclic subspace of $V_n(F)$.

NEXT GOAL:

An algebraic characterization of cyclic subspaces of $V_n(F)$ as ideals of the polynomial ring $R = F[x]/(x^n - 1)$.



THE POLYNOMIAL RING $R = F[x]/(x^n - 1)$

- Let $R = F[x]/(x^n - 1)$ where $F = \mathbb{GF}(q)$. Then R is a commutative ring (but not a field since $x^n - 1$ is reducible over F).

- We have the following bijection between $V_n(F)$ and R :

$$a = (a_0, a_1, a_2, \dots, a_{n-1}) \iff a(x) = a_0 + a_1x + a_2x^2 + \dots + a_{n-1}x^{n-1}.$$

- This bijection preserves vector addition and scalar multiplication:
 If $a, b \in V_n(F)$ and $\lambda \in F$, then $a+b \longleftrightarrow a(x) + b(x)$
 and $\lambda a \longleftrightarrow \lambda a(x)$.
- We can use this bijection to define a natural multiplication on $V_n(F)$:

DEFINITION Let $a, b \in V_n(F)$. Then $a \cdot b = c \in V_n(F)$, where $c \Leftrightarrow c(x) = a(x) \cdot b(x) \pmod{x^n - 1}$.

WHY CHOOSE x^{n-1} AS THE MODULUS IN R ?

- Let $a = (a_0, a_1, \dots, a_{n-1}) \in V_n(F)$, and let $a(x)$ be the associated polynomial in R . Then

$$\begin{aligned} x \cdot a(x) &= a_0 x + a_1 x^2 + \dots + a_{n-2} x^{n-1} + a_{n-1} x^n \\ &\equiv a_{n-1} + a_0 x + a_1 x^2 + \dots + a_{n-2} x^{n-1} \pmod{x^{n-1}} \\ \iff (a_{n-1}, a_0, a_1, \dots, a_{n-2}). \end{aligned}$$

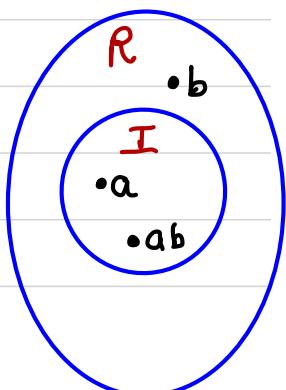
- So, multiplication by x of a polynomial in R corresponds to a (right) cyclic shift of the associated vector in $V_n(F)$.

DEFINITION Let R be a finite commutative ring.

A non-empty subset I of R is an ideal of R if

(i) $a, b \in I \Rightarrow a+b \in I$, and (ii) $a \in I, b \in R \Rightarrow a \cdot b \in I$.

EXAMPLE $\{0\}$ and R are (trivial) ideals of R .



THEOREM (algebraic characterization of cyclic subspaces of $V_n(F)$)

Let S be a non-empty subset of $V_n(F)$, and let I be the set of associated polynomials in $R = F[x]/(x^n - 1)$. Then S is a cyclic subspace of $V_n(F)$ iff I is an ideal of R .

PROOF (\Rightarrow) Suppose S is a cyclic subspace of $V_n(F)$. Since S is non-empty and closed under addition, so is I . Now, let $a(x) \in I$ and $b(x) = b_0 + b_1x + \dots + b_{n-1}x^{n-1} \in R$. Since S is a cyclic subspace, $x \cdot a(x) \in I$. Hence, $x^i a(x) \in I$ for all $0 \leq i \leq n-1$. Since S is closed under scalar multiplication, we have $b_i x^i a(x) \in I$ for all $0 \leq i \leq n-1$. Finally, since S is closed under addition, $\sum_{i=0}^{n-1} b_i x^i a(x) = b(x)a(x) \in I$. Thus, I is an ideal of R .

(\Leftarrow) Suppose I is an ideal of R . Since I is non-empty and closed under addition, so is S . Since I is closed under multiplication by constant polynomials (i.e., elements of F), S is closed under scalar multiplication. Thus, S is a subspace of $V_n(F)$. Finally, since I is closed under multiplication by x , S is closed under right cyclic shifts. Thus, S is a cyclic subspace of $V_n(F)$. \square

So, to study cyclic subspaces of $V_n(F)$, we proceed to study ideals of $R = F[x]/(x^n - 1)$.

V5b IDEALS OF $R = F[x]/(x^n - 1)$

DEFINITIONS Let R be a (finite commutative) ring, and let $g \in R$.

- Let $\langle g \rangle = \{g \cdot r : r \in R\}$. Then $\langle g \rangle$ is an ideal of R , called the ideal generated by g .
- An ideal I of R is principal if $I = \langle g \rangle$ for some $g \in I$.
- R is a principal ideal ring if every ideal of R is principal.

THEOREM $R = F[x]/(x^n - 1)$ is a principal ideal ring.

PROOF Let I be an ideal of R .

• If $I = \{0\}$, then $I = \langle 0 \rangle$.

• If $I \neq \{0\}$, then let $g(x)$ be a nonzero polynomial of smallest degree in I . We now show that $I = \langle g \rangle$.

Let $h \in I$. We can write $h(x) = l(x)g(x) + r(x)$, where $l, r \in F[x]$ and $\deg(r) < \deg(g)$. Now, $h(x), l(x)g(x) \in I$ implies that

$h(x) - l(x)g(x) \in I$, so $r(x) \in I$. But $\deg(r) < \deg(g)$, so we must have $r(x) = 0$. Thus, $h(x) = l(x)g(x)$, so $h \in \langle g \rangle$. Thus, $I \subseteq \langle g \rangle$.

And, since $g \in I$, we have $\langle g \rangle \subseteq I$. Thus, $I = \langle g \rangle$. \square

NOTE In the previous proof, we can take $g(x)$ to be monic, i.e. a polynomial whose leading coefficient is 1. This is because if $g(x) = g_0 + g_1x + \dots + g_tx^t \in I$ where $g_t \neq 0$, then $g_t^{-1}g(x) = g_0g_t^{-1} + g_1g_t^{-1}x + \dots + x^t \in I$ is monic.

DEFINITION Let I be an ideal of $R = F[x]/(x^n - 1)$.

- If $I = \{0\}$, then $x^n - 1$ is the canonical generator of I .
- If $I \neq \{0\}$, then the monic polynomial of smallest degree in I is the canonical generator of I .

- The following theorem justifies the qualifier "the" in the above definition.

THEOREM Let I be a nonzero ideal of $R = F[x]/(x^n - 1)$.

- 1) There is a unique monic poly. $g(x)$ of smallest degree in I , and $I = \langle g(x) \rangle$.
- 2) $g(x) \mid (x^n - 1)$ in $F[x]$.

PROOF 1) Let $g(x), h(x)$ be monic polynomials of (the same) smallest degree in I .

Then $g(x) - h(x) \in I$. But $\deg(g - h) < \deg(g)$. Hence $g(x) - h(x) = 0$, so $g(x) = h(x)$. This proves uniqueness of $g(x)$.

2) Write $x^n - 1 = l(x)g(x) + r(x)$, where $l, r \in F[x]$, $\deg(r) < \deg(g)$.

Then $r(x) = -l(x)g(x) + x^n - 1 \equiv -l(x)g(x) \pmod{x^n - 1}$.

Thus, $r(x) \in I = \langle g \rangle$, and so we must have $r(x) = 0$ since $\deg(r) < \deg(g)$. Hence $g(x) \mid (x^n - 1)$. \square

THEOREM Let $h(x)$ be a monic divisor of $x^n - 1$ in $F[x]$. Then $h(x)$ is the canonical generator of $I = \langle h(x) \rangle$.

PROOF • If $h(x) = x^n - 1$, then $I = \{0\}$.

• Suppose that $h(x) \neq x^n - 1$, so $I \neq \{0\}$. Let $g(x)$ be the monic polynomial of smallest degree in I . Since $h(x)$ generates I , we can write

$g(x) = a(x) h(x) \bmod (x^n - 1)$ for some $a(x) \in F[x]$, $\deg(a) < n$.

Hence, $g(x) = a(x) h(x) + l(x) (x^n - 1)$ for some $l(x) \in F[x]$.

Since $h(x) \mid (x^n - 1)$, we have $h(x) \mid g(x)$, so $\deg(h) \leq \deg(g)$.

But $\deg(g) \leq \deg(h)$, so $\deg(g) = \deg(h)$.

Finally, since g and h are both monic, we have $g(x) = h(x)$.

Hence, $h(x)$ is the canonical generator of $\langle h(x) \rangle$. \square

COROLLARY There is a 1-1 correspondence between ideals of R and monic divisors of $x^n - 1$ over F , and thus also a 1-1 correspondence between cyclic subspaces of $V_n(F)$ and monic divisors of $x^n - 1$ over F .

NOTE (monic divisors of $x^n - 1$ over F)

Let $x^n - 1 = p_1(x)^{e_1} p_2(x)^{e_2} \dots p_t(x)^{e_t}$ be the complete factorization of $x^n - 1$ over F , where p_1, p_2, \dots, p_t are monic irreducible polynomials in $F[x]$, and $e_i \geq 1$. Then the set of all monic divisors of $x^n - 1$ over F is

$$\{ p_1(x)^{f_1} p_2(x)^{f_2} \dots p_t(x)^{f_t} : 0 \leq f_i \leq e_i \}.$$

Hence, the number of monic divisors of $x^n - 1$ over F is

$$(e_1 + 1)(e_2 + 1) \dots (e_t + 1).$$

EXAMPLE Find all cyclic subspaces of $V_3(\mathbb{Z}_2)$.

SOLUTION The complete factorization of x^3-1 over \mathbb{Z}_2 is

$$x^3-1 = (x+1)(x^2+x+1).$$

So, the monic divisors of x^3-1 over \mathbb{Z}_2 are

$$g_1(x) = 1, \quad g_2(x) = x+1, \quad g_3(x) = x^2+x+1, \quad g_4(x) = (x+1)(x^2+x+1).$$

Hence, $V_3(\mathbb{Z}_2)$ has 4 cyclic subspaces.

CYCLIC SUBSPACE

$$\langle g_1(x) \rangle = S_1 = \{000, 001, 010, 011, 100, 101, 110, 111\} = V_3(\mathbb{Z}_2).$$

3

$$\langle g_2(x) \rangle = S_2 = \{000, 110, 011, 101\}.$$

2

$$\langle g_3(x) \rangle = S_3 = \{000, 111\}.$$

1

$$\langle g_4(x) \rangle = S_4 = \{000\}$$

0

DIMENSION

V5C DIMENSION AND A GM OF A CYCLIC CODE

-115-

THEOREM Let $g(x)$ be a monic divisor of $x^n - 1$ over F , where $F = GF(q)$. Suppose $\deg(g) = n - k$. Then the cyclic subspace S of $V_n(F)$ generated by $g(x)$ has dimension k .

PROOF Recall that $\langle g(x) \rangle = \{a(x)g(x) \bmod (x^n - 1) : a(x) \in F[x], \deg(a) < n\}$. We claim that $\langle g(x) \rangle = \{b(x)g(x) : b(x) \in F[x], \deg(b) < k\}$. To see this, let $h(x) = a(x)g(x) \bmod (x^n - 1)$ for some $a(x) \in F[x], \deg(a) < n$. Then we can write $a(x)g(x) = h(x) + l(x)(x^n - 1)$ for some $l(x) \in F[x]$. Since $g(x) \mid (x^n - 1)$, we have $g(x) \mid h(x)$, so $h(x) = b(x)g(x)$ for some $b(x) \in F[x], \deg(b) < k$. This proves the claim. Finally since there are q^k polynomials of degree $< k$ in $F[x]$, $\langle g(x) \rangle$ has size q^k . Thus, S has dimension k . \square

EXAMPLE Construct a $(7,4)$ -cyclic code over $F = \mathbb{Z}_2$.

SOLUTION We need a monic divisor of $x^7 - 1$ over \mathbb{Z}_2 of degree 3.

Now, the complete factorization of $x^7 - 1$ over \mathbb{Z}_2 is

$$x^7 - 1 = (x+1)(x^3+x+1)(x^3+x^2+1).$$

Choose $g(x) = x^3+x^2+1$.

Then $C = \langle x^3+x^2+1 \rangle$ is a $(7,4)$ -cyclic code over \mathbb{Z}_2 .

Let's find a GM for C . We need a basis for C , i.e. 4 linearly independent codewords in C . We can choose $g(x), xg(x), x^2g(x), x^3g(x)$ to get

$$G_1 = \begin{bmatrix} 1 & 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 & 1 \end{bmatrix} \quad \begin{array}{l} \leftarrow g(x) \\ \leftarrow xg(x) \\ \leftarrow x^2g(x) \\ \leftarrow x^3g(x) \end{array}$$

NOTE: C is systematic

EXAMPLE (cont'd) Encode the message $m = 1001$.

SOLUTION

$$c = mG = [1001] \begin{bmatrix} 1 & 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 & 1 \end{bmatrix} = \underline{1010011}.$$

$$\begin{aligned} \text{Equivalently, } c(x) &= m(x)g(x) \\ &= (1+x^3)(1+x^2+x^3) \\ &= 1+x^2+x^5+x^6 \\ &\iff \underline{1010011}. \end{aligned}$$

A GM FOR A CYCLIC CODE

THEOREM Let $g(x)$ be the canonical generator of an (n, k) -cyclic code C over F (so $g(x)$ is a monic divisor of $x^n - 1$ over F of degree $n-k$). Then a (non-standard) GM for C is

$$G_1 = \begin{bmatrix} g(x) \\ xg(x) \\ x^2g(x) \\ \vdots \\ x^{k-1}g(x) \end{bmatrix}_{k \times n}.$$

ENCODING Source messages are the polynomials in $F[x]$ of degree $< k$.

If $m(x) = m_0 + m_1x + \dots + m_{k-1}x^{k-1} \in F[x]$, then the encoding of m w.r.t. G_1 is $c = [m_0, m_1, \dots, m_{k-1}] G_1 = m_0g(x) + m_1xg(x) + \dots + m_{k-1}x^{k-1}g(x)$, so $c(x) = m(x)g(x)$. [NOTE: No reduction by $x^n - 1$ is needed.]

SUMMARY

- $V_n(F) \longleftrightarrow R = F[x]/(x^n - 1)$
- $a = (a_0, a_1, \dots, a_{n-1}) \in V_n(F) \longleftrightarrow a(x) = a_0 + a_1 x + \dots + a_{n-1} x^{n-1} \in R$
- C cyclic subspace of $V_n(F) \longleftrightarrow I$ ideal of R
- $\dim(C) = k \longleftrightarrow$ The canonical generator of I has degree $n-k$.
- Encoding: $c = mG$ $\longleftrightarrow c(x) = m(x)g(x)$, where $G = \begin{bmatrix} g(x) \\ xg(x) \\ \vdots \\ x^{k-1}g(x) \end{bmatrix}_{k \times n}$
- C^\perp is cyclic $\xleftarrow[V5d]$ The canonical generator is $h^*(x)$, where $h(x) = (x^{n-1})/g(x)$.
- Syndrome w.r.t. $a \xleftarrow[V5e]$ $s(x) = t(x) \bmod g(x)$ particular PCM
- MISSING: Distance of a cyclic code.

V5d THE DUAL CODE OF A CYCLIC CODE

-120-

- Let C be an (n, k) -cyclic code over \mathbb{F} with canonical generator $g(x)$.

- Let $g(x) = \underbrace{g_0}_{\neq 0} + \underbrace{g_1 x + \cdots + g_{n-k} x^{n-k}}_{=1} + \underbrace{g_{n-k+1} x^{n-k+1} + \cdots + g_{n-1} x^{n-1}}_{=0}$.

DEFINITION The parity-check polynomial of C is $h(x) = (x^{n-1})/g(x)$.

- Let $h(x) = \underbrace{h_0}_{\neq 0} + \underbrace{h_1 x + \cdots + h_k x^k}_{=1} + \underbrace{h_{k+1} x^{k+1} + \cdots + h_{n-1} x^{n-1}}_{=0}$.

- Let $a(x) = a_0 + a_1 x + \cdots + a_{n-1} x^{n-1} = g(x) h(x) \bmod (x^{n-1})$.

Note that $a(x) = 0$. Equating coefficients of x^i for $0 \leq i \leq n-1$, gives:

$$a_i = 0 = g_0 h_i + g_1 h_{i-1} + \cdots + g_i h_0 + g_{i+1} h_{n-1} + g_{i+2} h_{n-2} + \cdots + g_{n-1} h_{i+1}$$

- Thus, the vector $\bar{g} = (g_0, g_1, \dots, g_{n-1})$ is orthogonal to the vector $\bar{h} = (h_{n-1}, h_{n-2}, \dots, h_1, h_0)$ and all its cyclic shifts.

A PCM FOR C

- It follows that all cyclic shifts of g are orthogonal to all cyclic shifts of \bar{h} , where $\bar{h}(x) = h_{n-1} + h_{n-2}x + \dots + h_2x^{n-3} + h_1x^{n-2} + h_0x^{n-1}$.
- Recall the following GM for C :

$$G = \begin{bmatrix} g_0 & g_1 & \dots & g_{n-k} & 0 & \dots & 0 \\ 0 & g_0 & g_1 & \dots & g_{n-k-1} & g_{n-k} & \dots & 0 \\ \vdots & & & & \vdots & & & \\ 0 & 0 & \dots & \dots & g_0 & g_1 & \dots & g_{n-k} \end{bmatrix}_{k \times n}$$

- DEFINE:

$$H = \begin{bmatrix} h_k & h_{k-1} & \dots & h_0 & 0 & \dots & 0 \\ 0 & h_k & h_{k-1} & \dots & h_0 & \dots & 0 \\ \vdots & & & & & & \vdots \\ 0 & \dots & 0 & h_k & h_{k-1} & \dots & h_0 \end{bmatrix}_{(n-k) \times n}$$

- From the above observation, we have $G H^T = 0$.

Thus, $C' \subseteq C^\perp$, where C' is the code generated by the rows of H .
 But $\text{rank}(H) = n-k$ (since $h_k = 1$), so $\dim(C') = n-k = \dim(C^\perp)$.
 Hence, $C' = C^\perp$, and H is a (non-standard) PCM for C .

C^\perp is CYCLIC

DEFINITION Let $h(x) = h_0 + h_1 x + \dots + h_k x^k$ be a polynomial of degree k (so $h_k \neq 0$). The reciprocal polynomial of $h(x)$ is

$$h_R(x) = x^k h(\frac{1}{x}) = h_k + h_{k-1}x + \dots + h_1 x^{k-1} + h_0 x^k.$$

If $h_0 \neq 0$, we define $h^*(x) = h_0^{-1} h_R(x)$. [$h^*(x)$ is monic]

THEOREM Let C be an (n, k) -cyclic code over F with canonical generator $g(x)$. Let $h(x) = (x^n - 1)/g(x)$. Then C^\perp is cyclic, with canonical generator $h^*(x)$.

PROOF We have $g(x)h(x) = x^n - 1$, so $g(\frac{1}{x})h(\frac{1}{x}) = (\frac{1}{x})^n - 1$. Multiplying both sides by x^n gives $x^{n-k}g(\frac{1}{x})x^k h(\frac{1}{x}) = -(x^n - 1)$. Hence $g_R(x)h_R(x) = -(x^n - 1)$, so $h_R(x) \mid (x^n - 1)$. Thus, $h^*(x)$ is a monic divisor of $x^n - 1$. We saw on slide 121 that the $(n, n-k)$ -cyclic code generated by $h_R(x)$ (and thus also by $h^*(x)$) is C^\perp . \square

V5e COMPUTING SYNDROMES

- Let C be an (n, k) -cyclic code over \mathbb{F} with canonical generator $g(x)$.
- We will find a "nice" PCM for C .

i) Find a GM for C of the form $[R | I_k]$

For $0 \leq i \leq k-1$, long division gives $x^{n-k+i} = l_i(x)g(x) + t_i(x)$, $\deg(t_i) < n-k$, $\deg(l_i) < k$.

Then, $x^{n-k+i} - t_i(x) = l_i(x)g(x) \in C$.

Thus, a GM for C is:

$$G = \begin{bmatrix} -r_0(x) + x^{n-k} \\ -r_1(x) + x^{n-k+1} \\ \vdots \\ -r_{k-1}(x) + x^{n-1} \end{bmatrix}_{R \times n} = \begin{bmatrix} -x^{n-k} \bmod g(x) \\ -x^{n-k+1} \bmod g(x) \\ \vdots \\ -x^{n-1} \bmod g(x) \end{bmatrix}_{R \times n} \begin{bmatrix} I_k \end{bmatrix}_{R \times n} = [R | I_k]$$

NOTE: $\text{rank}(G) = R$.

a) A (standard form) PCM for C is $H = [I_{n-k} \mid -R^T]$.

Note that $H^T = \begin{bmatrix} I_{n-k} \\ -R \end{bmatrix}$, so the rows of H^T (the columns of H)

are $x^0 \bmod g(x)$, $x^1 \bmod g(x)$, ..., $x^{n-1} \bmod g(x)$.

THEOREM (computing syndromes) The syndrome of $r \in V_n(F)$ w.r.t. the above PCM is $s \in V_{n-k}(F)$, where $s(x) = r(x) \bmod g(x)$.

PROOF Let $r = (r_0, r_1, \dots, r_{n-1}) \in V_n(F)$. The syndrome of r is $s = Hr^T$.
 Hence $s(x) = [r_0 x^0 \bmod g(x)] + [r_1 x^1 \bmod g(x)] + \dots + [r_{n-1} x^{n-1} \bmod g(x)]$
 $= (r_0 + r_1 x + \dots + r_{n-1} x^{n-1}) \bmod g(x)$
 $= r(x) \bmod g(x)$. \square

EXAMPLE Consider the $(15, 9)$ -binary cyclic code C with canonical generator $g(x) = 1 + x + x^2 + x^3 + x^6$. Compute the syndrome of $r = (1100 \ 1000 \ 1110 \ 0000)$.

SOLUTION $r(x) = 1 + x + x^4 + x^8 + x^9 + x^{10}$.

$$\begin{array}{r}
 x^4 + x^3 + x^2 + x \quad r(x) \\
 \hline
 \overbrace{x^6 + x^3 + x^2 + x + 1}^{g(x)} \quad \overbrace{x^{10} + x^9 + x^8 + x^4 + x + 1}^{\text{Result of division}} \\
 x^{10} + x^7 + x^6 + x^5 + x^4 \\
 x^9 + x^8 + x^7 + x^6 + x^5 + x + 1 \\
 x^9 + x^6 + x^5 + x^4 + x^3 \\
 x^8 + x^7 + x^4 + x^3 + x + 1 \\
 x^8 + x^5 + x^4 + x^3 + x^2 \\
 x^7 + x^5 + x^2 + x + 1 \\
 x^7 + x^4 + x^3 + x^2 + x \\
 \hline
 s(x) \longrightarrow x^5 + x^4 + x^3 + 1
 \end{array}$$

$$\begin{array}{r}
 100 \ 1111 \quad \overbrace{1110 \ 0010011}^{\text{Result of division}} \\
 \hline
 1001111 \\
 1111100011 \\
 \hline
 1001111 \\
 110011011 \\
 \hline
 1001111 \\
 10100111 \\
 \hline
 1001111 \\
 111001
 \end{array}$$

Hence, $s = 100111$.

- The syndromes of a vector and its cyclic shifts are closely related.

THEOREM Let $r \in V_n(F)$ with syndrome polynomial $S(x) = S_0 + S_1x + \dots + S_{n-k-1}x^{n-k-1}$.

The syndrome of $x+r(x)$ is (i) $xS(x)$, if $S_{n-k-1} = 0$
 cyclic shift of r (ii) $xS(x) - S_{n-k-1}g(x)$, if $S_{n-k-1} \neq 0$.
not cyclic shifts

PROOF Since $r(x)$ has syndrome $S(x)$, we have $r(x) = l(x)g(x) + S(x)$ for some $l \in F[x]$. Hence, $x+r(x) = xl(x)g(x) + xS(x)$. Since $g(x) \mid (x^{n-1})$, $xr(x)$ and $x+r(x) \bmod (x^{n-1})$ leave the same remainder upon division by $g(x)$.

(i) If $S_{n-k-1} = 0$, then $\deg(S) < n-k-1$, so $\deg(xS) < n-k$. Hence, $xS(x)$ is the (unique) remainder upon dividing $x+r(x)$ by $g(x)$.

(ii) If $S_{n-k-1} \neq 0$, then $xr(x) = xl(x)g(x) + xS(x) - S_{n-k-1}g(x) + S_{n-k-1}g(x)$
 $= [xl(x) + S_{n-k-1}]g(x) + \underbrace{[xS(x) - S_{n-k-1}g(x)]}_{\bar{S}(x)}$. Notice that $\deg(\bar{S}) < n-k$,
 so $\bar{S}(x)$ is the unique remainder upon dividing $x+r(x)$ by $g(x)$. \square

- So, given the syndrome s of t , we can easily compute the syndromes of cyclic shifts of t .

- EXAMPLE (continuing the example on slide 125)

$$g(x) = x^6 + x^3 + x^2 + x + 1 \leftrightarrow 1111001, \quad t = 1100 \ 1000 \ 1110 \ 000, \quad s = 100111.$$

<u>i</u>	<u>$s_i(x) = \text{syndrome of } x^i t(x)$</u>
0	100111
1	101111
2	101011
3	101001
4	101000
5	010100
6	001010
7	000101
:	:

$$\begin{array}{r}
 010011 \\
 1111001 \\
 \hline
 1011110
 \end{array}$$

~~1011110~~

V5f BURST ERROR CORRECTION

- Cyclic codes are good for correcting burst errors.

DEFINITION Let $e \in V_n(F)$. The cyclic burst length of e is the length of the shortest cyclic block of e that contains all its non-zero components.

EXAMPLE The cyclic burst length of $e = 0110100010$ is 7.

DEFINITION A linear code C is a t -cyclic burst error correcting code if all cyclic burst errors of length $\leq t$ are in different cosets of C , i.e. have different syndromes. The largest such t is called the cyclic burst error correcting capability of C .

EXAMPLE $g(x) = x^6 + x^3 + x^2 + x + 1$ is the canonical generator for a $(15, 9)$ -binary cyclic code C . In fact, C is a 3-cyclic burst error correcting code. To check this, we verify that all cyclic bursts of length ≤ 3 have different syndromes.

^{cyclic} burst error	Syndrome	^{Integer} representation	^{cyclic} burst error	Syndrome	^{Integer} representation
0	000006	0	x^{12}	010110	22
x^0	100006	32	x^{13}	001011	11
x^1	010000	16	x^{14}	111001	57
x^2	001000	8	$1+x$	110000	48
x^3	000106	4	$x(1+x)$	011000	24
x^4	000010	2	\vdots	\vdots	\vdots
x^5	000001	1	$x^{14}(1+x)$	011001	25
x^6	111100	60	$1+x+x^2$	111000	56
x^7	011110	30	$x(1+x+x^2)$	011100	28
x^8	001111	15	\vdots	\vdots	\vdots
x^9	111011	59	$x^{14}(1+x+x^2)$	001001	9
x^{10}	100001	33	$1+x^2$	101000	40
x^{11}	101100	44	$x(1+x^2)$	010100	20
			\vdots	\vdots	\vdots
			$x^{14}(1+x^2)$	101001	41

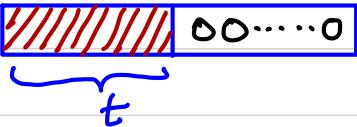
EXAMPLE $g(x) = x^8 + x^7 + x^6 + x^4 + 1$ is the canonical generator for a $(15, 7)$ -binary cyclic code C . C is a 4-cyclic burst error correcting code.

THEOREM (bounds on t , the cyclic burst error correcting capability of C)

Let C be an (n, k, d) -code over $F = GF(q)$. Then $\lfloor (d-1)/2 \rfloor \leq t \leq n-k$.

PROOF • Recall that the vectors of weight $\leq \lfloor (d-1)/2 \rfloor$ lie in different cosets of C . In particular, all cyclic burst errors of length $\leq \lfloor (d-1)/2 \rfloor$ lie in different cosets of C . Thus, $t \geq \lfloor (d-1)/2 \rfloor$.

• No two cyclic burst errors of length $\leq t$ lie in the same coset of C . In particular, no two vectors in which all the nonzero components are in the first t coordinate positions can lie in the same coset of C . Since there are q^t such vectors and q^{n-k} cosets, we must have $q^t \leq q^{n-k}$. Hence, $t \leq n-k$. \square



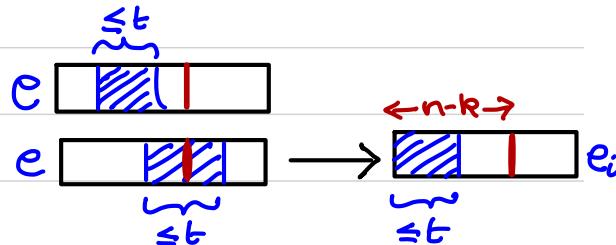
V5g DECODING ALG. FOR CYCLIC BURST ERROR CORRECTING CODES

- Let C be an (n, k) -cyclic code over F with canonical generator $g(x)$. Let t be the cyclic burst error correcting capability of C , so $t \leq n-k$.
- Recall that $H = [I_{n-k} \mid -R^T]$ is a standard form PCM for C . The syndrome of $r \in V_n(F)$ w.r.t. this PCM is $s(x) = r(x) \bmod g(x)$.

- IDEA OF DECODING ALGORITHM Suppose the error vector e is a cyclic burst of length $\leq t$. Then, some cyclic shift of e , say $e_i \leftrightarrow x^i e(x)$, has all its nonzero components in the first $n-k$ coordinate positions.

Then $s_i = H e_i^T$ has (non)-cyclic burst length $\leq t$, and $x = (s_i, 0)$ satisfies

$H x^T = s_i$. Thus, $e_i = (s_i, 0)$ and $e(x) = x^{n-i} e_i(x)$.



QUESTION How to compute s_i ? Let $r = c + e$, so $x^i r - x^i e = x^i c \in C$. Thus, $x^i r$ and $x^i e$ have the same syndrome. So, we compute syndromes of $r_i \longleftrightarrow x^i + (x)$ for $0 \leq i \leq n-1$.

ERROR TRAPPING ALGORITHM FOR CYCLIC BURST ERROR CORRECTING CODES

- Let r be the received word.
- For i from 0 to $n-1$ do:
 - Compute $s_i(x)$, the syndrome of $x^i r(x)$.
 - If $s_i(x)$ has non-cyclic burst length $\leq t$ then
 - Let $e(x) = x^{n-i} (s_i, 0)$.
 - Decode r to $c = r - e$ and STOP.
 - Reject r .

CORRECTNESS

If the error vector is in fact a cyclic burst error of length $\leq t$, then the algorithm will make the correct decision.

EXAMPLE Recall that $g(x) = x^6 + x^3 + x^2 + x + 1$ is the canonical generator for a $(15, 9)$ -binary cyclic code with cyclic burst error correcting capability $L=3$. Decode $r = 1110 \ 1110 \ 1100 \ 000$ using error trapping.

SOLUTION

<u>i</u>	<u>$s_i(x) = \text{syndrome of } x^i \cdot r(x)$</u>
0	110011 $\leftarrow s(x) = r(x) \bmod g(x)$
1	100101
2	101110
3	010111
4	110111
5	100111
6	101111
7	101011
8	101001
9	<u>101000</u>

burst of
length ≤ 3

- So, $e(x) = x^{15-9} S_9(x)$
 $= x^6 (1+x^2)$
 $= \underline{\underline{0000 \ 0010 \ 1000 \ 000}}.$

- Decode r to $c = r - e$

$$= \underline{\underline{1110 \ 1100 \ 0100 \ 000}}$$

- Check: $g(x) \mid c(x)$.

INTERLEAVING

PURPOSE: Increase the cyclic burst error correcting capability of a code.

- Let C be an (n, k) -code with cyclic burst error correcting capability t .

Suppose $C_1 = (C_{11}, C_{12}, \dots, C_{1n}) \in C$,

$C_2 = (C_{21}, C_{22}, \dots, C_{2n}) \in C$,

\vdots
 $C_s = (C_{s1}, C_{s2}, \dots, C_{sn}) \in C$.

- Interleaving to a depth s : Instead of sending C_1, C_2, \dots, C_s in that order, transmit the columns of the above array:

$$C^* = (C_{11}, C_{21}, \dots, C_{s1}, | C_{12}, C_{22}, \dots, C_{s2}, | \dots, | C_{1n}, C_{2n}, \dots, C_{sn}).$$

Then, any cyclic burst error of length $\leq st$ in C^* results in cyclic burst errors of length $\leq t$ in each of the original codewords C_1, C_2, \dots, C_s (and these errors can be corrected).

THEOREM (interleaving) Let C be an (n, k) -code over \mathbb{F} with cyclic burst error correcting capability t . Let C^* be the code obtained by interleaving C to a depth s .

- 1) C^* is an (ns, ks) -code over \mathbb{F} with cyclic burst error correcting capability ts .
- 2) Suppose C is cyclic with canonical generator $g(x)$.
Then C^* is cyclic with canonical generator $g(x^s)$.

PROOF (sketch) 1) Show that C^* is a vector subspace, has length ns , size q^{ks} (so dimension ks), and cyclic burst error correcting ts .

2) Show that $g(x^s)$ is a monic divisor of $x^{ns} - 1$ of degree $ns - ks$, and that $g(x^s) \mid c^*(x)$ for all $c^* \in C^*$. \square

EXAMPLE (cf. slide 133) $g(x^{100}) = x^{600} + x^{300} + x^{200} + x^{100} + 1$ is the canonical generator of a $(1500, 900)$ -binary cyclic code with cyclic burst error correcting capability $t = 300$.