— (26—

VVéa BCH Copes
« Recall Bhat Zp is a subfield of 6F‘((3“"7,
and. we can view @sFC(D"‘) as an m-dimensional

vectsy space ever Zp-
- Move geneally, fo- any pame power 01,)

» @FG) is a sobfield of GF(9™)

Fe Y >

Sajis ) and e can yiew évFC():M)
as an m—d\'menSfowa(

vector Space over @FC{{,’).

e EXAMPLE
«GF(3%) s o L6-dimenstonal V.S, over CfR).
« » 2  an 3-dimension  \.S. over G\F(D).
« M 5 O 4L-dimensionad v-S. over GF(a4)
T » G dimensiond v.s over GiF(28).
) y & 1-dimensiord v.S. over GiE(gIC).
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MINIMAL PO LYNOMIALS

F@™
-We eall G’\FG}"‘) on exkension Lield and G\F@) o cob Eleld, ®+¢ ) ol

DEFINLITION [e€ oceQFCq,'“). The minimal eb(ynomia.a of &
ovexr G\FCC?,)', denotecd W\d&d)’ is Ehe manic (ao(ymvmaﬂ o—?
smallest degree in GFQILy] thet has « as a resh.

NoTES 1)if wm(y) €6 F(g) Eca'_l is a nenzeve pelynomiel with ml«)=0, and
C is its leading coefficient, then ﬁ(g)sc"m(a) is @ moenic polynomial
in G»FCq,)Eg] with M) =0 and de_an‘v‘:)=-‘deg(m7,

2) Move generally, moltipling o ‘oo(\/nomf‘cc( by a. nenzevo anstant

oses net chcmge the toots of the Fo(ynom .
D We have moly) = Y.

Y
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1) 4 oiFo, then lek L be the ordler of of in GF(Y™), and reaal( that £1(g"2()
Then, & 15 @ veok of 3"—-[ e@FCq,)Eg] . Hence, there dees indead exist
a monic pely romial of smallest degree in GF(g) Lyl having of as a voet.

EXAMPLE Let's find the winimal pelynsmials over GR(3) of clements
N G\,FC&Q') = Z;LDC] /(Dcad':’c-kl) = {o) ‘)"C)x"'"j.
SOLUTION MO(*d) =y,

© milY) = g,

*Mx(y) = Yty

.« Wigst (3)—‘- 32‘4— G-
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PROPERTLES pF MINIMAL PoLYNOMIALS

THEOREM lebt «e G»FCT,"‘)‘

) The wminimal polynomial WMuly) of o« sver GIF(q) is onique.
) 'W\olclé) 8 wreducible over @\IFC@)
3 deq (W) <m.

x) Tf $eGRL], then §6) =0 <> muly)|$(y).

PROOF 1) Suppese ™ (y), w2(y) e GF(g) f'jj are two menic polynomials of the

Same Swallesk a(egree. with M, ) =2 () =p. Consider '1'63):: m‘(g)—m'z@.
Then +6O) =My ()-Ma () =o. Buk olEg('r><df3(mn), Se we myst have
'r(tj) =o. Hence, m‘Ca)-'z mg_(g), O



° PROOF OF 2) Suppese Ehat Mo(y s reducible over GIF(), Say
M (y) =5(Y) b where st e@F@G)IY] and 15deg(s), degcekdchmd).
Then M« ()= s6E)EE) =6, So either SE)=0 ot E()=0.
T eibhev- case we have a antradiction of the mminality of deglmd).
Wwe conclude thalr Md(g) is irreducible over @FCC;,')a O

» PRO®F BF 2) Recall kLhak @F@") is an m-dimenstenal vector space. over Gi3).
Se, the field elements 1) ,oC5 . ;o™ are lineaxly dependent over GiF(g).
Thos, we an wAEE Qo+q dl+Aaol 4 -+ Aok " =0 for Some, Ge,a, .,»,amé’@f:(g)
bngk are not all o. Hence, ot 1s a root of the nonzévo Pob/mmfa.o

mly) = q,+a¢‘é—|—azgzr}----+ amcd"" eGFQ) Ly] of degree =m.
Tt follows that deg(me) £ M. [
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* PRodF OF LL? Lek —f(lj) GG\FCQ,)E%] B?’ [ong division, we an wite
§ &)= £0Y Matly) +10), where LTeGFGIY] end dejf*)<at3(mot).
Now, $60 = L) Mo () +4() =+(K) (since Mu &) =0).
Hence, $G) =0 < +6)=0o
< rly)=o (smce dca(f) <deg CWM))
< Maly)|$ey). O
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VGb GComeuting MinMAL PoLynoMIALS -~
&F@") .,

*We will show thab the mobs of Mu(y) are precisely
the “conjugates” of « over GF().

* (We'\l need the fal(smmt} ~vesolt .

THEOREM [eb «cBGF(gM). Then o€ &mF(q) iff o(V=et.

PROOF Smce p¥= @ fovr all BeGF (), the clemerts o} GFE) are
a\l roots of the poknomial Y+-Ye GR(GILY). Since bhis polnomid has
degree g, i6 cat have any other @ots n GG Thos, o= if§ 4e6F6). O

DeEFINTION Let o(éG\FCq,'“) Lebt £ be the Swuallesk positive m&eam—
soch thak ot =« (note? E<m). Tl\en the se b of cm)‘oﬁabcs of o
wet. GFG) 15 CW) = 1d,00f, a9, ol#5']




NOTE The € cnjogates in CCa) ave distinct. This is bemuse hcoﬂ o{"ﬁ
whete o<i<p<b-l, Ethen o - o(‘?f"—o So (oﬁ“ "——o()q’-—o Hence
o(q'a--'ol =0, SO o(q'& =, which contVadicES the mmlMa‘.uE\/c{— .

THEOREM Leb de GF(q™).Then the mviwal poly syl of « over G\qu,)
s wly) = ”T ch B) = (§-0(4-a%) (Yo9?)--(y-o#).

PROO\:‘ x) Clear[}) mCtd') is monic oand M) =0 .
n) Lek —SLGG\F(‘),)B}] £ #0, with ,}&) 0. Leb’s pove tuk oisg(9)>(:

Lek §y) = Z*ﬁ Then £6&%) = Z%’-ﬂ" Z&d‘)#@

=0
Do, o,a¥, @j. ..)d‘ft‘ ovre roots o,c £. Hence deg(-S)>t.

N
7




~lh4—
PROOF Ccont’d) : :
i) Let wly)= 1Y (q-p) = cqt. Then m) e GFEMNTY].
= 118 = > lmey P e GrETY
We need. to prove thek Wiy eGF@Q) Y],

Now, w(y)¥= (4-) ¥ = Y_p¥) - (y¥-
S @gag% P @Eg ¥ e@;cﬂg '6)

Also, ()% =< )b = ST e
7= (Zmey) ;mcg ,
Com\oarinﬁ coeficients ol %C‘{, of ) and (¥ 3ie|o\s 'mf' =M
Por 0<(SE. Thus, Mic GFCY), and so mly)e&GF(@ITy].
iv) We conclude Enat ng) \S a wonic fao[ynom all of swallest deaarec
n 6F() Tyl tat has e as a root. []



EXAMPLE Considet+ G\WW(a%) = Za[x]/Cxb4x+1). Find the
minimal PO(gnomfaQ of €=x3+.x2 over Za. (Heve, q,=a,m=zD,
SOLOTION When dbing wmeul.‘a.{:tins by hand, E's osefol to
have @ gererabor o of GF@Y), and a toble of- powers of .
Tk torns oot thet &=x is @ generator of GF(a*)*
Now, 8 =c. Heace CCP)={uté ot af 3§ (s0 t=4).
Thos, "mp(j')= C%‘-o(‘)(j-o(‘a)(%—o(ncﬁd—ola)
2Ly Gy [y2 cMaygretd]
=L *37'+ o & j-!-ols_:( [«j*i-ocg +ol 1]
= '3“ +(2+a)y> + (o '1+o<5+a3)32'+ (o' ot ) 2
=y + g3+«-€1"+tl+1,

—IAS"'

o=\
o' =
d2..:;0(2.
o=ot’
ol& = o4
LB= P
ol ool
o(?:o(a-i-el-l'!
oL 3 = A4
e = ol Ao
o(*® =0l Fet+1
R Y
ol = ool ok
of @ = ot telt
of Bz o34
olt‘S =
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VEC FAcTorinG ™1 ovER GF(9) Leack4]
GOAL Describe the §actorization of -\ sver &F(g)- From this, we
will see how canenical generators g&(] can by chesen so that we have @
nan-frivial lowes bound o the distmce of the oyclic cede generated by gx).

PRELIMINARLIES Let p be the chavacteristic of- GF(g) . Af 3Cal('n,<],)¢l 5
then write m= ,;,-\Pﬂ, where L2 and 364071,1,)-‘—[.
Then 2¢'=t = ~xaet | = (»xfn'__‘)fl. So, WLOG, we shall assume gedfn,q)=I.

NOTATION LeEmw be the swallest positive (nteger such that 9,2 (mod ),
e, M l(q,m-l). LFACT: Such an ™ extsts|

Let o be a generntot of- GlFCCf,"‘)*.

Let p= ™D/, ond nobe that ge GF(gM).
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' Also, od(B)=m, and so 1, . 8% -, 8" e distinct.
Focthermoee, (p)" = (B =1 =4 for each 6SiSW-L.
Hewnce, i,ﬁ,pf-.., ﬁ"‘( ace roots of x™-I. Se, the complete Jackxrization
of ™~ over Q") is o™= (- (x-g)(=-¢*) - - (z-g""),

* However, we seeR the factorization of x™i over V().

* Consider ?L, where 0SL<N-I-
Since @l is a ok of ™1, we have W) | (™)
Az, the voots of MeiG) ae C@)=1p, g%, 6%, ., 89 1
where £ is the swalest positive integer such that

Lc[f =i (mod M),
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CYCLOTOMIC COSETS

* The discussion on the previeus slides motivates the ffs(lwing degmition.

DEFINLTION Suppese thak” gcd(n,q)=1, ard let o=isw-(. The
cyclobomic coseb of 94 wmed M cont a:’m}ng, L s

Ci =1i, L9, mod , L‘I,?-modﬂ, reee) ch-“ moal'ng)
wheve £ is the smallest eoSiEch inf:egcv such that 6@"56 (ved 1),
Also, C=1Ci105tsv1] is the set of cyclotomic cosets of g med M.

* EXAMPLE The Cyclobomic cosets of a mod \5 (423, m=15) are:
Co=10t, Ci=11,2,4,8% =C=C4=Cs,
Cy=13,6,12,a§2C¢=Cia=Cq, Cs=15,10§=Cls,
Cz=17,14,13,113=Cu=Ci5=Gi.  Hence C=1Co,G,Ca,Cs5, o],
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* As the exampl Svuggests, |1 J:e Ce, then C} =Ci.

¢ NOTE: Mpi (x)= (x-pt) (e ) (o0~ p4) -+ (oc- %) /T (- @3)
AGCL
's a monic itreducible factor of ™1 over GLF@ of degree LCl.

*This proves the following theorem.

THEOREM Suppose thak gcd(n,g,)z(,

) The nomber of montc ireducible §actors of ™1 ever GifQ) is gl

to Ehe number of (distinct) cyclotomic cosebs of 9, mod M.

2) The nomber of wonic irreducible factors of de ree d s ea}uccH:o
the nomber of (distinct) cyclofomic cosets og 9, wod M of sized.
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Véd Frctoring %™ OVER G\,FCq,) L€ark a]

THEOREM 3Suppose gcd(mg)=1. Lek ™ be the smallest positive
inkeget such that q,m—s\ (med 1), and let Be&F(q™) be an
element of ovder m. Then Ehe monic ireducible factors of
x"-1 ovet GiF(3) ave {mpi (x): o< i1, cshere

Mei (9 =T (xc-pd).

veCs

voTe: 4¢ {eCi, then mg&(:thmai(at).
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EXAMPLE Factor oc'™-| over Za. (Here 973, n=15)
SoLuTION * The cyclobsmic cosebs of @ mod (5 ave Co=§o§,C.={1,a,4)8§)
C3=13,6, ca)ﬂ) Cs={5,0%, qu.—-{q)u.);a,u}. So, o'Z( phas 5 ineducible
fackors over Za, one of degree 4, one of degree 2, and three of degree 4.,
¢ The smallest m Sor wohich 2™zt (med. 19) is ™M=,
- We need an element @e@F(al() of ocdet I5. K See slde (45
Let’s toke p=, Since o is a generator §ov GF(a%)= Za5 (oot
* We then compute : pge(x)= oc+| Co=%0%
wme (x)= o x+) C'=§U9;L;,83
See slide 45 A pwmpd ()5 xchy oyt xt Ca={3,6,\2,9§
Mg (x) = ottt C5=15, 108
m(a?(x) = oo+ Cz={7,14,3,11

(=
e Thus, o' 1= (o) Cocract) (oc® 4ot 1) (ach 403 1) (e 234 o 2c41).
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EXAMPLE Determine the numbet of grelic subspaces of qu(Z;),
SoLoTION * First, we obsevve that x3°-1 = (')
+To debermine the factorization pattern of o~ over Z3, we find the
Cyclo{:omfc cosets of 9=3 modulo =10 :
Co=108, C,=11,3,9,7), Ca={2,6,8,43, Cs=$51.
*Thus x?-) = [-S-y&--f;-f;]q) where §o, %, s GZBL”:] are wmonjc.
ivved. pokmomials over- 73 , and deg(fo)=\, deg($)=4., deg(£2)=4., deg(5s)=1.
‘ Hence, the number of wonic fackors of oc¥-1 over Z3 is oxioxiovro =(o000.
This S also the qumbet of eyclic svbspaces of- Voo (Z),

NOTE §¢()= Mgik), where @ is an element of odtet- (0 n GE(3H).
dn fact, x'°-1= (xt+0)(wta) (o + 2241 ot 4ax®e ot ax+).
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V6e 8CuH Copes: DEFINLTION
» Discovered in 960 by RC.Bose and D Ray—Chaudhuri, and
indegendently n 1259 by A.Hocquenghem.

* A BCH code. is a cyclic cede theb is anstrcked s that a
nen-trivial lower beund is Rnown on iEs distance .

SETUP Soppese gcd(n,q)=14.

'Leb m be the swallest posibive inbeger such thak Ci,ms( (med ),

‘Lebec be a genemtor of GF(QMY, and e 8=t T~V (50 od (B)=).

- Lek 'Y‘(\gi (=) denote Ehe winimal eok/nvmm,( of ?" Aver- C«—“;F(g,)/
for 02isn-I. Recall thet i) | (x™1). Lo

‘We wil lek Wgiex) = W\pimo&v\ x) Sov iym (since €,L:_ P,.m n)‘



—154—

DEFINLTION A BCH code C over GF() of lengkh 0 and deStgvPa( distrce &
s o cyclic code of length n over GF(g) with canonical qenerator
%@c\_—_ Lcon { 'm@; ) : a<ic<a+ S—azs, _Sior Some iwbsgcr— Q.

NOTES ) fem $3,3,57,7,7,1,115 = 3x5x7x(\.

2) Since each ‘m?,i(?c) IS a monic ineducible factor of ™ ) e fellows
Ehalt 3(7(7 is o menic divisor of- 2™-1. Hence 3(70 is indeed the
canonical genevator for a oyelic code of lengéh m over &F(g),

) AMon% the roots of gx) are the §- conseco‘:)\fﬁ pewers of B!
@ , + a-ta a&s-a

2 BCH bownd * AL > S CPmog " VeS|
5) A€ a=(, the BCH code (S varmw-Sense,
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EXAMPLE (BCH cede) Leb §=3, n=13. Then M =3 since 2332\ (ved 19).
+ Consider G\F(32) = A Dj/(o( 3 fasts1).
“ Then o« 1s S genecator of- GF(3%)* (see next slide).
« Also, g= ol? has ovder \3.

Compul:e Ehe. cyclstomic cosebs of- g=3 med m=(3:

Co =40} mpt’fw) ot 2.
C‘-ft,s,qﬁ Mg @) = ka0 rax+a.
Ca= 12,6, 5}— N2 (x)= x3rax+a.
Cy= EZ\-, 2, lO} m§‘\ (x) = pcg,g-xz,‘_x-fa.
Gz = {?) 2, ”}_ Yog? () = 2P+ by,

\4



EXAMPLE (cont'd)
* 2 0x) = (oc-p2) (-6 (- ¢°)
= (2=t #) (- o) (2—t'®)
= [(o®- (a4t ?) x +t16] [l
=[a® £ oo + o' [oc+0t??]
= 234 (o O o2 ) (g o) bl
= o+ ax+a.
* Lekt 30(): MNe°(x)- M(a'(x)v \m@"('?()
= x? t+ xbrax’s xhraxsad.
+The voots of g0 ace 8°,8'8% % 8% 85, F.
Among these vooksS ave p") B, PQ)@?‘) Y
5=5 = d 25.

Sample
ninmal
‘,nom Ml

@lculabton

°(c::___( dezg
o' =g ot*4 =29

oA 2at 2 o« F=a42

L3 = 94u> L8z el
L4z gtao+ad® A= |ratad”
A5 = 24ax oL®= 1+
L= Qo+ o= wtdl*
AT = L 4ol? A2° = +ad?
L8z Qoo g =i Radead

o= atad+aud? L= Vet ot
K97 (Fadtx* B=g+arad

A= 2+l 242 \+3ul
o2z a3 zotranl?
ol 26 =\

* Thos, g(x) is the canonical genevator for G (12, 6)-BCH code over GFR)

of drstance ak least 5.




VG& BCH Boound e

EXAMPLE Does there exist a block code with pavameters 9=2,

n=12z, M=2%, d>a1? [slide a5) Viaz (Za)

The c»weseo\no\m} stcre Qqcking m‘blcm
(S: Can we place M-‘—a‘“sphcms of

radiusS e'-'-(..g-'?.l:lo in Vua?(Za) so that

no two sehcres ouevla‘a?

SoLuTIiON NYES! we will describe @ BCH code with paametets
4= n=12%, R=64, §=2a),

We have m=7 gince a?s\ (wmed \9?).
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EXAMPLE (coobd) The cyclotomic cosets of 2 wed @7 are:

Co= 103 * Leb p be an element of order 137 in GFGT)
Co=10,2,4,8,16,33, 644§ « Then gG0)= Mp (- M) W gs (- g? )
C5=13,6,13,24,43,36, 5‘5} ’Wﬁ*(‘r%“\@,“(x)'“\@"(’ﬂ’m§'5(x7'W\p‘q 6x)

Cs =15, 10, a0, 40,30, 33, 663 s adearee—éa menic di\riSO‘(ag— o aer GFG).
Cz=1%, ‘41“)55“930‘7)‘?3 * The roots of 360 inclode ?‘\') |<C<ae.
cquqJ!8, 26,73, |7, 34, 63} OThUS, 8(9(;) iS the canonca %enemtcrr ‘S’c‘h Q
Cn=11,23,44,88, 49,98, 4“% (137, 64)-binavy BCH code wibh designed
Cia= 213, 36,59, 104, 81,25,76] | distance S=a\ (sodistance = al).

Cis= 115,360,690, a0, 113, 99, 7§
Cia={19,38,76 a5,50,100,733

es @




VANDER MONDE MATRICES
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DEFNLTION A Vandermende matrix over a field Fis a wabnx of
, o here 7‘«,‘2<:!,---;7((;6F

ceead
Hr\c-g'—cn-m ACX,():’Cz,.-o)ZCe): ‘ N

Icz X2 -+ Xg
Ty Xy
: 1

PR B
x|e LQ.\ xe

—_—

_JExt

THEOREM dek (ACx,xa,-.. xe))-#o i§¢ o3,

Xy ave distinct.

PROOF Per{:orm Ehe -}o\lowln% row opemé.')‘c}vls
ek*‘@k X, R~ N (

: bo geb A= | O X
Rgé— Ra- 2, R2

Qae“ Rz“x\Q| :

Now compute det(AD by —

on A

‘ o s e
x?,‘xg - e 0

o ‘JC:_'-I‘I: x’;-—z,zs

-2 (-,-\

ex panding Q(on% the firsk wlumn '

~N
7

|
X -3y

x;‘x,x‘.‘ R

(]

O CIZ,, "xlzﬂ. 13 "1113 . " ‘xb "-I\:IE

o
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PRoOE (contd) [\ U oeees [

X2 2x3.... A,
dek (A) =deb(A)= (a-2)(x-2) - (xp-x) det | 22 x3.... 2

£2 b2 +-2
I;. 363 o6 so b

B (e-) >.<_C6"7

By ('nduc,&n‘on) detCA) = W CIA‘XL)

(ééq’ét

Thos, detCA) #o i§§ =x(,2ca,..., X ave distinck. ]

CoROLLARY The Vandermende watrix ACD&,DCa,w,QCe) IS
nen-singolar j§£ ¢, xa, ..., Xe are distmet.




—El-

THEOREM (BCH bound)
Lek C be an (nR)-BCH code over GiF(g) with designed d.istamce 5.
Then A (C) Z §.

PROOF -Let 8(3\2) be the canonical genemtor Jor C. For simplicity,
we'll assume Eheb C is narew-sense (so a=1). Hence,
g(:c')= fcwm {M@f-(ac): lsi < S-Iz)
where BE&F(4™) has ovder M.

* Now, let eV (61F()).
Then [Te Cl<y 96 l+() <= mpie) () S|+ =0 v 15iss).

VAR

N
s/




P 8 e ... —(£2—-
PRoOF CCOT‘L"OD o lek H= |y PZ ((3’-) --- @z)n-l
L

? ((?3)2 - (B

: S- ) Sl
€ C@ yoe (e _1(8&Dxm
«Now, +eC > +(p)=0 V1251 < HtT=0.

* Furthermore, no £=5- columns of H ace lineerly dependent over-G6FG") sine

P"‘ eblo e e ‘vb ( ( L ( —

dek [@" (p)7 - () | =phpipidet |pY R gl

&

(PS") Le (ﬁs-l) G e (ps—\) Le (6 L() §-a (Pf,,_)s-?" (@%)S:
e .
( (‘\r ) et (A( Pu 9('% ) L&)) :#O) Since Pu P @tbare distinct.
- \/omderv(\ende. matrix

N
4
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PROOF (conb’d)

- Since G\,F(ti,')c@FCﬁ,m) we als0 have that no -t colomns of
H\ ave l\nea\"ly d,e,ecnd,en(:' over GM

+ Now, i§- ceC, c#o,w()< 8, then HiCT=0 gives 0 asa
non- trivial lmear cowxbmalg;on ovet G\F(cﬂ of St (or fewer) coloms of
conbvadicEing what we fust proved.

- Hence, every nonzero codeword in C has weight 23.

+Thos, dCC) 2 8. O
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V63 Exampes oF BCH Cozes

EXAMPLE #|  +Let 9=3, n=3"-1 where +22. Then catd(n,o‘,)f-( ancdk =1,
slet P be a %enera,l',o\" of GFGEV)*.
«The cye lbtomic coseks of a wmed n are C°={o7x,Ct--{(,a,zb...,;z"“‘ﬁ,..-..
‘Leb 9ux)= W () =(x- @) (x-¢*)(x-B4)--- (x-—@lﬂ).
“Then %C‘X) is Ehe canonical %enemlfo* Sov a (Q=(, A" -+)-binavy
BCH code C with designed distance 3=3. Se, d(C) 23.

* A PCM Lo+ C must sk like H:U ‘ ‘ ‘ ot ‘J‘
+x (™)

t_/"\/_§J
ol nonzero veckors i Vi-(Za)

So,C 1s a cyclic binary Hatmming: code (and d(C)-‘—"B).
* Hence, all binary Hamming cedes are cyclic, up fo cquivalence.
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EXAMPLE #3 *Lek g== and m=2a3. Then m=1 [2"'=5( (med 23]
- The cyclobomic cosets of 2 med 23 ace:
C°={03, C;‘-—‘-{(, 2, 4,2,16,9, \g, 13, 3,6; (.Q?\, C52{5‘\0,90,\?) l\,QQ,Q\,\q)l‘S’ﬂ)(LJ_,
dn fack x231 = (xn) (a4 Teacteoés oracr ) (e o % oy o Fp  beoyn),

*Let g be an clement of oer 23 1 GF(3")¥. Let gi)= Mg
Then q(x) is the canovical generator for a (33,12) -binay BCH cde C
of olest'gneo\ distance §=5, Hence d(C)=5.
Focthermove, 3@)e€ C, seo d(C)S 7,

* FACT C 1S ea‘/u‘lvalen(: £o Ehe b,m(y @Lolatd, Code Cz?»
Seo, Czz is e@uﬁ\ralewt to a cyclic code.
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EXAMPLE #72 +Let 973, n=2"“1=65535. Then 9cd(m,9,)=\ and m=(s,
et GiF(a¥) = Zalad / (ot 4ot ot® +a™41).

* FACT: o s a generatot of- Gr(ae)*. Let p=ql.

» The cyclotomic coseks of gamed 65535 are: Co’-’(iog,
C=%1,2,4,8,16,...5, C3=13,6,13,a4,...5 , Cs=15,030,... 7, C?’*‘%?,llr)---i,
C‘t=§qu?).-- § 5 Cu=§l(,a’&,...§, C(3=1¢.(3,...§} C15'="{‘5)---23/
Cz=1%...7, Ca=16,..5, Ca=ia),...}, Gz=%a3..5, ...,

* FACT Ci,C3,GCs,..., Cas are distinck and have size 16 .

- Let g(x) = ﬂ' M et @). Then deg (4)=13x ¢ =193.
‘:é{’>3453--79~33
. %(’x) (s the canonical gcnevator for a (65535, £5343)-binary
BCH code C with §=85  so d(c)23s.

N
V4
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EXAMPLE #3 (contd)

THEOREM (S\novl:en'm% acede) Let C be a svas(:e«naeic (n,R,d)-code over G‘F@;
ond, let E<R. Let C’ be the code obbained by “sharéening” C m its Sicst

E coordinate pesibions; je. taking all codewods in C that have o in
the first & coodlinate pesibions ,and then deleking those coodinabes.
Then C’ is an (n-t, R-t,d/)-cede over GF() withd'zd,

p— P

PRoOF Let G =" be a standavd-Sorm G\M e C.
‘l A
- | 4 Rxn

Let & be the matnix optamed oy delebing. the List & ows oF &,
ond then de(e(:ing the §icst £ colomns. Then G/is a (‘Q»k)x(n%:)
GM for C’/ withd'zd. O

N
4



—(63-

EXAMPLE #3 (cont'd)
- C: (65535, ¢5343)-binevy BCH cede with d235.

»C is sgsbema,{:rc_ since C has a GM, GL:—I 9Cx) I
g e
=) | .
¢ Consider the shortened cede C’ ...
obtained b\{ shorben(ng, C byE=33135, - \_Q.Cz)_l—‘

» Then C’ is a (33460, 323208)-binars code
with cistance d’>3a5.

e C’is osed (toﬁebhev with an LDEC cede) in the DVB-52 standed
5):0'*' o\f%ikm\ video bf‘oadcaskina,—-Sal:d\i(:e,
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EXAMPLE ¥4 (QR codes)
|) «Lek 9= and n=(5, so gad(n,§)=l and m=L.
Leb GF(a4) = Za[old [(t4rosr) and p=ct- Then ord(p)=is.
*Leb g6A)= Mplx)- M@sex). mpst) = 2% oy ooy, [:;ff(e 151
*Then (%) (s the canonical generabor for a (i5,5)-binary BCH cede C
with §=2 (since B, 8% @3 g4 B%,p° ae mots of-9GA). % Lact, dCO)=7.
* Cis used in QR codes Eo encede Ehe “formab data! TThere are BQ-S:O‘mES:I

D - 9= x'r 2t 2F+ 28425 241 15 the carmnical genembor for o

(23,12,7) - BCY code Bas thet is eclluivalenk Lo C23,
* Lek Ea3 be the seb of even-wetght codewos in Ba3. Then E23 is
o (33,13, 8)-bmary cyclic cede with canenical generator %GO' (x+).
“lek S23 be the (i8,6,%)-bwary code obtained by shw‘:ﬁ\inigza by £=5.
+ S22 s used ko encede the “version data’. LThece afe 34 vevsions]

~

/7
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EXAMPLE #4 (cont’d)
3) A (a55,331,25)-RS wde over GF(A?%) (s used for the payload,
moce. precisely @ shockened (36, 18,25)-cede over GLF(a®) (t=ad),
and a Shortened (37, 13,25)-code over GF(a8) (E=alg), [see slide 175]

DECODING BCH CODES

Several efficient a(aori&hms have been designed -fordeceding BCH codes,
We den't have the time fo Study them. Tnstead, we’'ll study a
deceding algorl’t‘hm for a familx/ of BCH cedes called
Reed-Solomen (RS) codes .




