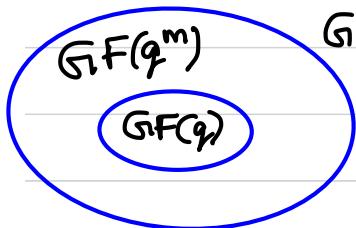


V6a BCH CODES

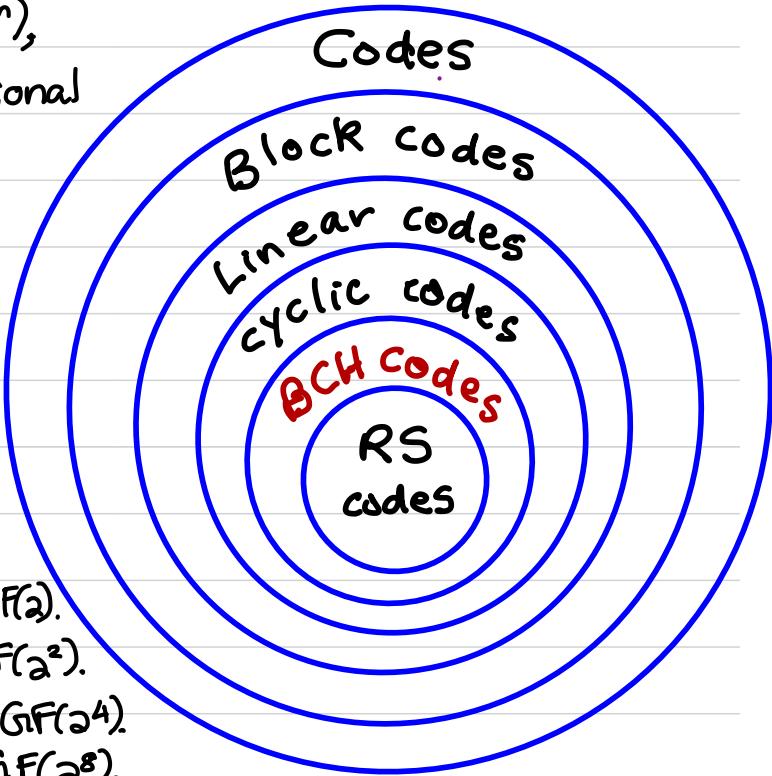
- Recall that \mathbb{Z}_p is a subfield of $\text{GF}(p^m)$, and we can view $\text{GF}(p^m)$ as an m -dimensional vector space over \mathbb{Z}_p .
- More generally, for any prime power q ,



$\text{GF}(q)$ is a subfield of $\text{GF}(q^m)$, and we can view $\text{GF}(q^m)$ as an m -dimensional vector space over $\text{GF}(q)$.

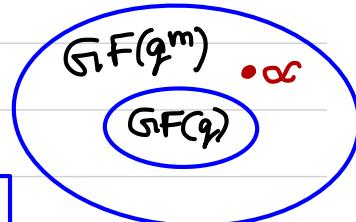
EXAMPLE

- $\text{GF}(2^{16})$ is a 16-dimensional v.s. over $\text{GF}(2)$.
- " " " an 8-dimensional v.s. over $\text{GF}(2^2)$.
- " " " a 4-dimensional v.s. over $\text{GF}(2^4)$.
- " " " a 2-dimensional v.s. over $\text{GF}(2^8)$.
- " " " a 1-dimensional v.s. over $\text{GF}(2^{16})$.



MINIMAL POLYNOMIALS

- We call $\text{GF}(q^m)$ an extension field and $\text{GF}(q)$ a subfield.



DEFINITION Let $\alpha \in \text{GF}(q^m)$. The minimal polynomial of α over $\text{GF}(q)$, denoted $m_\alpha(y)$, is the monic polynomial of smallest degree in $\text{GF}(q)[y]$ that has α as a root.

NOTES

- 1) If $m(y) \in \text{GF}(q)[y]$ is a nonzero polynomial with $m(\alpha) = 0$, and c is its leading coefficient, then $\bar{m}(y) = c^{-1}m(y)$ is a monic polynomial in $\text{GF}(q)[y]$ with $\bar{m}(\alpha) = 0$ and $\deg(\bar{m}) = \deg(m)$.
- 2) More generally, multiplying a polynomial by a nonzero constant does not change the roots of the polynomial.
- 3) We have $m_\alpha(y) = y$.

4) If $\alpha \neq 0$, then let t be the order of α in $\text{GF}(q^m)$, and recall that $t \mid (q^m - 1)$. Then, α is a root of $y^t - 1 \in \text{GF}(q)[y]$. Hence, there does indeed exist a monic polynomial of smallest degree in $\text{GF}(q)[y]$ having α as a root.

EXAMPLE Let's find the minimal polynomials over $\text{GF}(2)$ of elements in $\text{GF}(2^2) = \mathbb{Z}_2[x]/(x^2 + x + 1) = \{0, 1, x, x + 1\}$.

SOLUTION

- $m_0(y) = y$.
- $m_1(y) = y + 1$,
- $m_x(y) = y^2 + y + 1$.
- $m_{x+1}(y) = y^2 + y + 1$.

PROPERTIES OF MINIMAL POLYNOMIALS

THEOREM Let $\alpha \in GF(q^m)$.

- 1) The minimal polynomial $m_\alpha(y)$ of α over $GF(q)$ is unique.
- 2) $m_\alpha(y)$ is irreducible over $GF(q)$.
- 3) $\deg(m_\alpha) \leq m$.
- 4) If $f \in GF(q)[y]$, then $f(\alpha) = 0 \iff m_\alpha(y) \mid f(y)$.

PROOF 1) Suppose $m_1(y), m_2(y) \in GF(q)[y]$ are two monic polynomials of the same smallest degree with $m_1(\alpha) = m_2(\alpha) = 0$. Consider $r(y) = m_1(y) - m_2(y)$. Then $r(\alpha) = m_1(\alpha) - m_2(\alpha) = 0$. But $\deg(r) < \deg(m_1)$, so we must have $r(y) = 0$. Hence, $m_1(y) = m_2(y)$. \square

- PROOF OF 2) Suppose that $m_\alpha(y)$ is reducible over $\text{GF}(q)$, say $m_\alpha(y) = s(y)t(y)$ where $s, t \in \text{GF}(q)[y]$ and $1 \leq \deg(s), \deg(t) < \deg(m_\alpha)$. Then $m_\alpha(\alpha) = s(\alpha)t(\alpha) = 0$, so either $s(\alpha) = 0$ or $t(\alpha) = 0$.

In either case we have a contradiction of the minimality of $\deg(m_\alpha)$. We conclude that $m_\alpha(y)$ is irreducible over $\text{GF}(q)$. \square

- PROOF OF 3) Recall that $\text{GF}(q^m)$ is an m -dimensional vector space over $\text{GF}(q)$. So, the field elements $1, \alpha, \alpha^2, \dots, \alpha^m$ are linearly dependent over $\text{GF}(q)$. Thus, we can write $a_0 + a_1\alpha + a_2\alpha^2 + \dots + a_m\alpha^m = 0$ for some $a_0, a_1, \dots, a_m \in \text{GF}(q)$ that are not all 0. Hence, α is a root of the nonzero polynomial $m(y) = a_0 + a_1y + a_2y^2 + \dots + a_my^m \in \text{GF}(q)[y]$ of degree $\leq m$. It follows that $\deg(m_\alpha) \leq m$. \square

• PROOF OF 4) Let $f(y) \in \mathbb{GF}(q)[y]$. By long division, we can write $f(y) = l(y) m_\alpha(y) + r(y)$, where $l, r \in \mathbb{GF}(q)[y]$ and $\deg(r) < \deg(m_\alpha)$.

Now, $f(\alpha) = l(\alpha) m_\alpha(\alpha) + r(\alpha) = r(\alpha)$ (since $m_\alpha(\alpha) = 0$).

Hence, $f(\alpha) = 0 \iff r(\alpha) = 0$

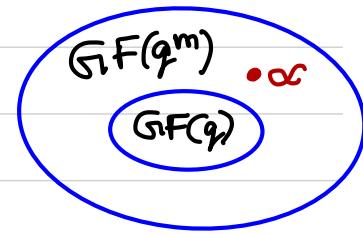
$\iff r(y) = 0$ (since $\deg(r) < \deg(m_\alpha)$)

$\iff m_\alpha(y) \mid f(y)$. □

V6b COMPUTING MINIMAL POLYNOMIALS

-142-

- We will show that the roots of $m_\alpha(y)$ are precisely the "conjugates" of α over $\text{GF}(q)$.
- We'll need the following result.



THEOREM Let $\alpha \in \text{GF}(q^m)$. Then $\alpha \in \text{GF}(q)$ iff $\alpha^q = \alpha$.

PROOF Since $\beta^q = \beta$ for all $\beta \in \text{GF}(q)$, the elements of $\text{GF}(q)$ are all roots of the polynomial $Y^q - Y \in \text{GF}(q)[Y]$. Since this polynomial has degree q , it can't have any other roots in $\text{GF}(q^m)$. Thus, $\alpha^q = \alpha$ iff $\alpha \in \text{GF}(q)$. \square

DEFINITION Let $\alpha \in \text{GF}(q^m)$. Let t be the smallest positive integer such that $\alpha^{q^t} = \alpha$ (note: $t \leq m$). Then the set of conjugates of α w.r.t. $\text{GF}(q)$ is $C(\alpha) = \{\alpha, \alpha^q, \alpha^{q^2}, \dots, \alpha^{q^{t-1}}\}$.

NOTE The t conjugates in $C(\alpha)$ are distinct. This is because if $\alpha^{q^i} = \alpha^{q^j}$ where $0 \leq i < j \leq t-1$, then $\alpha^{q^j} - \alpha^{q^i} = 0$, so $(\alpha^{q^{j-i}} - 1)^{q^i} = 0$. Hence $\alpha^{q^{j-i}} - 1 = 0$, so $\alpha^{q^{j-i}} = 1$, which contradicts the minimality of t .

THEOREM Let $\alpha \in \text{GF}(q^m)$. Then the minimal polynomial of α over $\text{GF}(q)$ is $m(y) = \prod_{\beta \in C(\alpha)} (y - \beta) = (y - \alpha)(y - \alpha^q)(y - \alpha^{q^2}) \cdots (y - \alpha^{q^{t-1}})$.

PROOF i) Clearly, $m(y)$ is monic and $m(\alpha) = 0$.

ii) Let $f \in \text{GF}(q)[y]$, $f \neq 0$, with $f(\alpha) = 0$. Let's prove that $\deg(f) \geq t$.

Let $f(y) = \sum_{i=0}^d f_i y^i$. Then $f(\alpha^q) = \sum_{i=0}^d f_i \alpha^{iq} = \left(\sum_{i=0}^d f_i \alpha^i \right)^q = f(\alpha)^q = 0$.

So, $\alpha, \alpha^q, \alpha^{q^2}, \dots, \alpha^{q^{t-1}}$ are roots of f . Hence $\deg(f) \geq t$.

PROOF (cont'd)

iii) Let $m(y) = \prod_{\beta \in C(\alpha)} (y - \beta) = \sum_{i=0}^t m_i y^i$. Then $m(y) \in \text{GF}(q^n)[y]$.

We need to prove that $m(y) \in \text{GF}(q)[y]$.

$$\begin{aligned} \text{Now, } m(y)^q &= \prod_{\beta \in C(\alpha)} (y - \beta)^q = \prod_{\beta \in C(\alpha)} (y^q - \beta^q) = \prod_{\beta \in C(\alpha)} (y^q - \beta) \\ &= m(y^q) = \sum_{i=0}^t m_i y^{iq}. \quad (*) \end{aligned}$$

$$\text{Also, } m(y)^q = \left(\sum_{i=0}^t m_i y^i \right)^q = \sum_{i=0}^t m_i^q y^{iq}. \quad (**)$$

Comparing coefficients of y^{iq} of $(*)$ and $(**)$ yields $m_i^q = m_i$ for $0 \leq i \leq t$. Thus, $m_i \in \text{GF}(q)$, and so $m(y) \in \text{GF}(q)[y]$.

iv) We conclude that $m(y)$ is a monic polynomial of smallest degree in $\text{GF}(q)[y]$ that has α as a root. \square

EXAMPLE Consider $\text{GF}(2^4) = \mathbb{Z}_2[x]/(x^4+x+1)$. Find the minimal polynomial of $\beta = x^3+x^2$ over \mathbb{Z}_2 . (Here, $q=2$, $n=4$).

SOLUTION When doing computations by hand, it's useful to have a generator α of $\text{GF}(2^4)^*$, and a table of powers of α .

It turns out that $\alpha=x$ is a generator of $\text{GF}(2^4)^*$.

Now, $\beta = \alpha^6$. Hence $C(\beta) = \{\alpha^6, \alpha^{12}, \alpha^9, \alpha^3\}$ (so $t=4$).

$$\begin{aligned}
 \text{Thus, } m_\beta(y) &= (y - \alpha^6)(y - \alpha^{12})(y - \alpha^9)(y - \alpha^3) \\
 &= [y^2 - (\alpha^6 + \alpha^{12})y + \alpha^{18}] [y^2 - (\alpha^9 + \alpha^3)y + \alpha^{12}] \\
 &= [y^2 + \alpha^4 y + \alpha^3] [y^2 + \alpha y + \alpha^{12}] \\
 &= y^4 + (\alpha + \alpha^4)y^3 + (\alpha^{12} + \alpha^5 + \alpha^3)y^2 + (\alpha^{16} + \alpha^4)y + \alpha^{15} \\
 &= \underline{y^4 + y^3 + y^2 + y + 1}.
 \end{aligned}$$

$$\begin{aligned}
 \alpha^0 &= 1 \\
 \alpha^1 &= \alpha \\
 \alpha^2 &= \alpha^2 \\
 \alpha^3 &= \alpha^3 \\
 \alpha^4 &= \alpha + 1 \\
 \alpha^5 &= \alpha^2 + \alpha \\
 \alpha^6 &= \alpha^3 + \alpha^2 \\
 \alpha^7 &= \alpha^3 + \alpha + 1 \\
 \alpha^8 &= \alpha^2 + 1 \\
 \alpha^9 &= \alpha^3 + \alpha \\
 \alpha^{10} &= \alpha^2 + \alpha + 1 \\
 \alpha^{11} &= \alpha^3 + \alpha^2 + \alpha \\
 \alpha^{12} &= \alpha^3 + \alpha^2 + \alpha + 1 \\
 \alpha^{13} &= \alpha^3 + \alpha^2 + 1 \\
 \alpha^{14} &= \alpha^3 + 1 \\
 \alpha^{15} &= 1
 \end{aligned}$$

V6C FACTORING $x^n - 1$ OVER $\text{GF}(q)$ [Part 1]

-146-

GOAL Describe the factorization of $x^n - 1$ over $\text{GF}(q)$. From this, we will see how canonical generators $g(x)$ can be chosen so that we have a non-trivial lower bound on the distance of the cyclic code generated by $g(x)$.

PRELIMINARIES Let p be the characteristic of $\text{GF}(q)$. If $\gcd(n, q) \neq 1$,

then write $n = \bar{n}p^k$ where $k \geq 1$ and $\gcd(\bar{n}, q) = 1$.

Then $x^n - 1 = x^{\bar{n}p^k} - 1 = (x^{\bar{n}} - 1)^{p^k}$. So, wLOG, we shall assume $\gcd(n, q) = 1$.

NOTATION Let m be the smallest positive integer such that $q^m \equiv 1 \pmod{n}$, i.e. $n \mid (q^m - 1)$. [FACT: such an m exists.]

Let α be a generator of $\text{GF}(q^m)^*$.

Let $\beta = \alpha^{(q^m-1)/n}$, and note that $\beta \in \text{GF}(q^m)$.

- Also, $\text{ord}(\beta) = n$, and so $1, \beta, \beta^2, \dots, \beta^{n-1}$ are distinct.

Furthermore, $(\beta^i)^n = (\beta^n)^i = 1^i = 1$ for each $0 \leq i \leq n-1$.

Hence, $1, \beta, \beta^2, \dots, \beta^{n-1}$ are roots of $x^n - 1$. So, the complete factorization of $x^n - 1$ over $\text{GF}(q^m)$ is $x^n - 1 = (x-1)(x-\beta)(x-\beta^2) \cdots (x-\beta^{n-1})$.

- However, we seek the factorization of $x^n - 1$ over $\text{GF}(q)$.

- Consider β^i , where $0 \leq i \leq n-1$.

Since β^i is a root of $x^n - 1$, we have $m_{\beta^i}(x) \mid (x^n - 1)$.

Also, the roots of $m_{\beta^i}(x)$ are $C(\beta^i) = \{\beta^i, \beta^{iq}, \beta^{iq^2}, \dots, \beta^{iq^{t-1}}\}$, where t is the smallest positive integer such that

$$iq^t \equiv i \pmod{n}.$$

CYCLOTOMIC COSETS

- The discussion on the previous slides motivates the following definition.

DEFINITION Suppose that $\gcd(n, q) = 1$, and let $0 \leq i \leq n-1$. The cyclotomic coset of $q \pmod n$ containing i is

$$C_i = \{i, iq \pmod n, iq^2 \pmod n, \dots, iq^{t-1} \pmod n\},$$

where t is the smallest positive integer such that $iq^t \equiv i \pmod n$.

Also, $C = \{C_i : 0 \leq i \leq n-1\}$ is the set of cyclotomic cosets of $q \pmod n$.

- EXAMPLE** The cyclotomic cosets of $2 \pmod{15}$ ($q=2$, $n=15$) are:

$$C_0 = \{0\}, \quad C_1 = \{1, 2, 4, 8\} = C_2 = C_4 = C_8,$$

$$C_3 = \{3, 6, 12, 9\} = C_6 = C_{12} = C_9, \quad C_5 = \{5, 10\} = C_{10},$$

$$C_7 = \{7, 14, 13, 11\} = C_{14} = C_{13} = C_{11}. \quad \text{Hence } C = \{C_0, C_1, C_3, C_5, C_7\}.$$

- As the example suggests, if $j \in C_i$, then $C_j = C_i$.

- NOTE: $m_{\beta^i}(x) = (x - \beta^i)(x - \beta^{iq})(x - \beta^{iq^2}) \cdots (x - \beta^{iq^{t-1}}) = \prod_{j \in C_i} (x - \beta^j)$

is a monic irreducible factor of $x^n - 1$ over $\mathbb{GF}(q)$ of degree $|C_i|$.

- This proves the following theorem.

THEOREM Suppose that $\gcd(n, q) = 1$.

- The number of monic irreducible factors of $x^n - 1$ over $\mathbb{GF}(q)$ is equal to the number of (distinct) cyclotomic cosets of $q \pmod{n}$.
- The number of monic irreducible factors of degree d is equal to the number of (distinct) cyclotomic cosets of $q \pmod{n}$ of size d .

V6d FACTORING x^n-1 OVER $\text{GF}(q)$ [Part 2]

THEOREM Suppose $\text{gcd}(n, q) = 1$. Let m be the smallest positive integer such that $q^m \equiv 1 \pmod{n}$, and let $\beta \in \text{GF}(q^m)$ be an element of order n . Then the monic irreducible factors of x^n-1 over $\text{GF}(q)$ are $\{m_{\beta^i}(x) : 0 \leq i \leq n-1\}$, where

$$m_{\beta^i}(x) = \prod_{j \in C_i} (x - \beta^j).$$

NOTE: If $j \in C_i$, then $m_{\beta^j}(x) = m_{\beta^i}(x)$.

EXAMPLE Factor $x^{15}-1$ over \mathbb{Z}_2 . (Here $q=2$, $n=15$)

SOLUTION • The cyclotomic cosets of 2 mod 15 are $C_0 = \{0\}$, $C_1 = \{1, 2, 4, 8\}$, $C_3 = \{3, 6, 12, 9\}$, $C_5 = \{5, 10\}$, $C_7 = \{7, 14, 13, 11\}$. So, $x^{15}-1$ has 5 irreducible factors over \mathbb{Z}_2 , one of degree 1, one of degree 2, and three of degree 4.

- The smallest m for which $\alpha^m \equiv 1 \pmod{15}$ is $m=4$.
- We need an element $\beta \in \text{GF}(2^4)$ of order 15. see slide 145

Let's take $\beta = \alpha$, since α is a generator for $\text{GF}(2^4) = \mathbb{Z}_2[\alpha]/(\alpha^4 + \alpha + 1)$.

- We then compute: $m_{\beta}(x) = x+1$ $C_0 = \{0\}$

$$m_{\beta}(x) = x^4 + x + 1 \quad C_1 = \{1, 2, 4, 8\}$$

See slide 145 $m_{\beta^3}(x) = x^4 + x^3 + x^2 + x + 1 \quad C_3 = \{3, 6, 12, 9\}$

$$m_{\beta^5}(x) = x^2 + x + 1 \quad C_5 = \{5, 10\}$$

$$m_{\beta^7}(x) = x^4 + x^3 + 1 \quad C_7 = \{7, 14, 13, 11\}.$$

- Thus, $x^{15}-1 = (x+1)(x^2+x+1)(x^4+x+1)(x^4+x^3+1)(x^4+x^3+x^2+x+1)$.

EXAMPLE Determine the number of cyclic subspaces of $V_{90}(\mathbb{Z}_3)$.

SOLUTION • First, we observe that $x^{90}-1 = (x^{10}-1)^9$.

• To determine the factorization pattern of $x^{10}-1$ over \mathbb{Z}_3 , we find the cyclotomic cosets of $q=3$ modulo $n=10$:

$$C_0 = \{0\}, \quad C_1 = \{1, 3, 9, 7\}, \quad C_2 = \{2, 6, 8, 4\}, \quad C_5 = \{5\}.$$

• Thus, $x^{90}-1 = [f_0 \cdot f_1 \cdot f_2 \cdot f_5]^9$, where $f_0, f_1, f_2, f_5 \in \mathbb{Z}_3[x]$ are monic irred. polynomials over \mathbb{Z}_3 , and $\deg(f_0)=1$, $\deg(f_1)=4$, $\deg(f_2)=4$, $\deg(f_5)=1$.

• Hence, the number of monic factors of $x^{90}-1$ over \mathbb{Z}_3 is $10 \times 10 \times 10 \times 10 = \underline{\underline{10000}}$.
This is also the number of cyclic subspaces of $V_{90}(\mathbb{Z}_3)$.

NOTE $f_i(x) = m_{\beta^i}(x)$, where β is an element of order 10 in $\text{GF}(3^4)$.

In fact, $x^{10}-1 = (x+1)(x+2)(x^4+x^3+x^2+x+1)(x^4+2x^3+x^2+2x+1)$.

V6e

BCH CODES: DEFINITION

- Discovered in 1960 by R.C. Bose and D. Ray-Chaudhuri, and independently in 1959 by A. Hocquenghem.

- A BCH code is a cyclic code that is constructed so that a non-trivial lower bound is known on its distance.

SETUP Suppose $\gcd(n, q) = 1$.

- Let m be the smallest positive integer such that $q^m \equiv 1 \pmod{n}$.
- Let α be a generator of $\text{GF}(q^m)^*$, and let $\beta = \alpha^{(q^m-1)/n}$ (so $\text{ord}(\beta) = n$).
- Let $m_{\beta^i}(x)$ denote the minimal polynomial of β^i over $\text{GF}(q)$, for $0 \leq i \leq n-1$. Recall that $m_{\beta^i}(x) \mid (x^n - 1)$.
- We will let $m_{\beta^i}(x) = m_{\beta^{i \bmod n}}(x)$ for $i \geq n$ (since $\beta^i = \beta^{i \bmod n}$).

DEFINITION A BCH code C over $\text{GF}(q)$ of length n and designed distance δ is a cyclic code of length n over $\text{GF}(q)$ with canonical generator $g(x) = \text{lcm} \{ m_{\beta^i}(x) : a \leq i \leq a + \delta - 2 \}$, for some integer a .

NOTES 1) $\text{lcm} \{ 3, 3, 5, 7, 7, 7, 11, 11 \} = 3 \times 5 \times 7 \times 11$.

2) Since each $m_{\beta^i}(x)$ is a monic irreducible factor of $x^n - 1$, it follows that $g(x)$ is a monic divisor of $x^n - 1$. Hence $g(x)$ is indeed the canonical generator for a cyclic code of length n over $\text{GF}(q)$.

3) Among the roots of $g(x)$ are the $\delta - 1$ consecutive powers of β :

$$\beta^a, \beta^{a+1}, \beta^{a+2}, \dots, \beta^{a+\delta-2}.$$

4) BCH bound : $d(C) \geq \delta$. [Proof in V6f]

5) If $a=1$, the BCH code is narrow-sense.

EXAMPLE (BCH code) Let $q=3$, $n=13$. Then $m=3$ since $3^3 \equiv 1 \pmod{13}$.

- Consider $GF(3^3) = \mathbb{Z}_3[\alpha] / (\alpha^3 + 2\alpha^2 + 1)$.
- Then α is a generator of $GF(3^3)^*$ (see next slide).
- Also, $\beta = \alpha^2$ has order 13.
- Compute the cyclotomic cosets of $q=3 \pmod{n=13}$:

$$C_0 = \{0\} \quad m_{\beta^0}(x) = x+2.$$

$$C_1 = \{1, 3, 9\} \quad m_{\beta^1}(x) = x^3 + 2x^2 + 2x + 2.$$

$$C_2 = \{2, 6, 5\} \quad m_{\beta^2}(x) = x^3 + 2x + 2.$$

$$C_4 = \{4, 12, 10\} \quad m_{\beta^4}(x) = x^3 + x^2 + x + 2.$$

$$C_7 = \{7, 8, 11\} \quad m_{\beta^7}(x) = x^3 + x^2 + 2.$$

EXAMPLE (cont'd.)

$$\begin{aligned}
 \bullet m_{\beta^2}(x) &= (x-\beta^2)(x-\beta^6)(x-\beta^5) \\
 &= (x-\alpha^4)(x-\alpha^{12})(x-\alpha^{10}) \\
 &= [(x^2 - (\alpha^4 + \alpha^{12})x + \alpha^{16})][x - \alpha^{10}] \\
 &= [x^2 + \alpha^{10}x + \alpha^{16}][x + \alpha^{23}] \\
 &= x^3 + (\alpha^{10} + \alpha^{23})x^2 + (\alpha^{16} + \alpha^{33})x + \alpha^{39} \\
 &= \underline{x^3 + 2x^2 + 2}.
 \end{aligned}$$

$$\begin{aligned}
 \bullet \text{Let } g(x) &= m_{\beta^0}(x) \cdot m_{\beta^1}(x) \cdot m_{\beta^2}(x) \\
 &= \underline{x^7 + x^6 + 2x^5 + x^4 + 2x + 2}.
 \end{aligned}$$

The roots of $g(x)$ are $\beta^0, \beta^1, \beta^3, \beta^9, \beta^2, \beta^6, \beta^5$.
 Among these roots are $\beta^0, \beta^1, \beta^2, \beta^3$, so

$$\delta = 5 \Rightarrow d \geq 5.$$

Thus, $g(x)$ is the canonical generator for a $(13, 6)$ -BCH code over $\text{GF}(3)$ of distance at least 5.

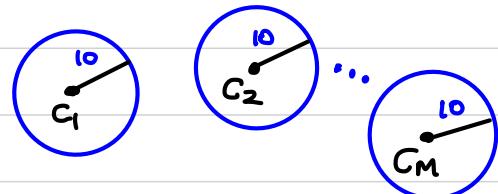
$\alpha^0 = 1$	$\alpha^{13} = 2$
$\alpha^1 = \alpha$	$\alpha^{14} = 2\alpha$
$\alpha^2 = \alpha^2$	$\alpha^{15} = 2\alpha^2$
$\alpha^3 = 2 + \alpha^2$	$\alpha^{16} = 1 + 2\alpha^2$
$\alpha^4 = 2 + 2\alpha + \alpha^2$	$\alpha^{17} = 1 + \alpha + 2\alpha^2$
$\alpha^5 = 2 + 2\alpha$	$\alpha^{18} = 1 + \alpha$
$\alpha^6 = 2\alpha + 2\alpha^2$	$\alpha^{19} = \alpha + \alpha^2$
$\alpha^7 = 1 + \alpha^2$	$\alpha^{20} = 2 + 2\alpha^2$
$\alpha^8 = 2 + \alpha + \alpha^2$	$\alpha^{21} = 1 + 2\alpha + 2\alpha^2$
$\alpha^9 = 2 + 2\alpha + 2\alpha^2$	$\alpha^{22} = 1 + \alpha + \alpha^2$
$\alpha^{10} = 1 + 2\alpha + \alpha^2$	$\alpha^{23} = 2 + \alpha + 2\alpha^2$
$\alpha^{11} = 2 + \alpha$	$\alpha^{24} = 1 + 2\alpha$
$\alpha^{12} = 2\alpha + \alpha^2$	$\alpha^{25} = \alpha + 2\alpha^2$
	$\alpha^{26} = 1$

V6f BCH Bound

EXAMPLE Does there exist a block code with parameters $q=2$, $n=127$, $M=2^{64}$, $d \geq 21$? [slide 25]

The corresponding sphere packing problem is: Can we place $M=2^{64}$ spheres of radius $r = \lfloor \frac{21-1}{2} \rfloor = 10$ in $V_{127}(\mathbb{Z}_2)$ so that no two spheres overlap?

$V_{127}(\mathbb{Z}_2)$



SOLUTION YES! We will describe a BCH code with parameters $q=2$, $n=127$, $k=64$, $\delta=21$.

We have $m=7$ since $2^7 \equiv 1 \pmod{127}$.

EXAMPLE (cont'd) The cyclotomic cosets of $\alpha \bmod 127$ are:

$$C_0 = \{0\}$$

$$C_1 = \{1, 2, 4, 8, 16, 32, 64\}$$

$$C_3 = \{3, 6, 12, 24, 48, 96, 65\}$$

$$C_5 = \{5, 10, 20, 40, 80, 33, 66\}$$

$$C_7 = \{7, 14, 28, 56, 112, 97, 67\}$$

$$C_9 = \{9, 18, 36, 72, 17, 34, 68\}$$

$$C_{11} = \{11, 22, 44, 88, 49, 98, 69\}$$

$$C_{13} = \{13, 26, 52, 104, 81, 35, 70\}$$

$$C_{15} = \{15, 30, 60, 120, 113, 99, 71\}$$

$$C_{19} = \{19, 38, 76, 25, 50, 100, 73\}$$

⋮

- Let β be an element of order 127 in $\text{GF}(2^7)^*$.
- Then $g(x) = m_\beta(x) \cdot m_{\beta^3}(x) \cdot m_{\beta^5}(x) \cdot m_{\beta^7}(x) \cdot m_{\beta^9}(x) \cdot m_{\beta^{11}}(x) \cdot m_{\beta^{13}}(x) \cdot m_{\beta^{15}}(x) \cdot m_{\beta^{19}}(x)$ is a degree-63 monic divisor of $x^{127}-1$ over $\text{GF}(2)$.
- The roots of $g(x)$ include β^i , $1 \leq i \leq 20$.
- Thus, $g(x)$ is the canonical generator for a $(127, 64)$ -binary BCH code with designed distance $\delta = 21$ (so distance ≥ 21).

VANDERMONDE MATRICES

DEFINITION A Vandermonde matrix over a field F is a matrix of the form $A(x_1, x_2, \dots, x_t) = \begin{bmatrix} 1 & 1 & \dots & 1 \\ x_1 & x_2 & \dots & x_t \\ x_1^2 & x_2^2 & \dots & x_t^2 \\ \vdots & \vdots & & \vdots \\ x_1^{t-1} & x_2^{t-1} & \dots & x_t^{t-1} \end{bmatrix}_{t \times t}$, where $x_1, x_2, \dots, x_t \in F$.

THEOREM $\det(A(x_1, x_2, \dots, x_t)) \neq 0$ iff x_1, x_2, \dots, x_t are distinct.

PROOF Perform the following row operations on A :

$$\left\{ \begin{array}{l} R_t \leftarrow R_t - x_1 R_{t-1} \\ \vdots \\ R_3 \leftarrow R_3 - x_1 R_2 \\ R_2 \leftarrow R_2 - x_1 R_1 \end{array} \right.$$

to get $A_1 =$

$$\begin{bmatrix} 1 & 1 & 1 & \dots & 1 \\ 0 & x_2 - x_1 & x_3 - x_1 & \dots & x_t - x_1 \\ 0 & x_2^2 - x_1 x_2 & x_3^2 - x_1 x_3 & \dots & x_t^2 - x_1 x_t \\ \vdots & \vdots & \vdots & & \vdots \\ 0 & x_2^{t-1} - x_1 x_2^{t-2} & x_3^{t-1} - x_1 x_3^{t-2} & \dots & x_t^{t-1} - x_1 x_t^{t-2} \end{bmatrix}.$$

Now compute $\det(A_1)$ by expanding along the first column:

PROOF (cont'd)

$$\det(A) = \det(A_1) = (x_2 - x_1)(x_3 - x_1) \cdots (x_t - x_1) \cdot \det$$

$$\begin{bmatrix} 1 & 1 & \cdots & 1 \\ x_2 & x_3 & \cdots & x_t \\ x_2^2 & x_3^2 & \cdots & x_t^2 \\ \vdots & \vdots & & \vdots \\ x_2^{t-2} & x_3^{t-2} & \cdots & x_t^{t-2} \end{bmatrix}.$$

$$\text{By induction, } \det(A) = \prod_{1 \leq i < j \leq t} (x_j - x_i).$$

Thus, $\det(A) \neq 0$ iff x_1, x_2, \dots, x_t are distinct. \square

COROLLARY The Vandermonde matrix $A(x_1, x_2, \dots, x_t)$ is non-singular iff x_1, x_2, \dots, x_t are distinct.

THEOREM (BCH bound)

Let C be an (n, k) -BCH code over $\text{GF}(q)$ with designed distance δ . Then $d(C) \geq \delta$.

PROOF • Let $g(x)$ be the canonical generator for C . For simplicity, we'll assume that C is narrow-sense (so $\alpha=1$). Hence,

$$g(x) = \text{lcm} \{ m_{\beta^i}(x) : 1 \leq i \leq \delta-1 \},$$

where $\beta \in \text{GF}(q^m)$ has order n .

- Now, let $r \in V_n(\text{GF}(q))$.

Then $r \in C \Leftrightarrow g(x) \mid r(x) \Leftrightarrow m_{\beta^i}(x) \mid r(x) \Leftrightarrow r(\beta^i) = 0 \ \forall 1 \leq i \leq \delta-1$.

PROOF (cont'd) • Let $H_1 =$

$$\begin{bmatrix} 1 & \beta & \beta^2 & \cdots & \beta^{n-1} \\ 1 & \beta^2 & (\beta^2)^2 & \cdots & (\beta^2)^{n-1} \\ 1 & \beta^3 & (\beta^3)^2 & \cdots & (\beta^3)^{n-1} \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & \beta^{\delta-1} & (\beta^{\delta-1})^2 & \cdots & (\beta^{\delta-1})^{n-1} \end{bmatrix} \quad (\delta-1) \times n$$

• Now, $\tau \in C \Leftrightarrow \tau(\beta^i) = 0 \quad \forall 1 \leq i \leq \delta-1 \Leftrightarrow H_1 \tau^T = 0$.

• Furthermore, no $t = \delta-1$ columns of H_1 are linearly dependent over $\text{GF}(q^m)$ since

$$\det \begin{bmatrix} \beta^{i1} & \beta^{i2} & \cdots & \beta^{it} \\ (\beta^2)^{i1} & (\beta^2)^{i2} & \cdots & (\beta^2)^{it} \\ \vdots & \vdots & & \vdots \\ (\beta^{\delta-1})^{i1} & (\beta^{\delta-1})^{i2} & \cdots & (\beta^{\delta-1})^{it} \end{bmatrix} = \beta^{i1} \beta^{i2} \cdots \beta^{it} \cdot \det \begin{bmatrix} 1 & 1 & \cdots & 1 \\ \beta^{i1} & \beta^{i2} & \cdots & \beta^{it} \\ \vdots & \vdots & & \vdots \\ (\beta^{i1})^{\delta-2} & (\beta^{i2})^{\delta-2} & \cdots & (\beta^{it})^{\delta-2} \end{bmatrix}$$

$$= \left(\prod_{j=1}^t \beta^{ij} \right) \cdot \det \underbrace{\left(A(\beta^{i1}, \beta^{i2}, \dots, \beta^{it}) \right)}_{\text{Vandermonde matrix}} \neq 0, \text{ since } \beta^{i1}, \beta^{i2}, \dots, \beta^{it} \text{ are distinct.}$$

PROOF (cont'd)

- Since $\text{GF}(q) \subseteq \text{GF}(q^m)$, we also have that no $\delta-1$ columns of H_1 are linearly dependent over $\text{GF}(q)$.
- Now, if $c \in C$, $c \neq 0$, $\omega(c) < \delta$, then $H_1 c^T = 0$ gives 0 as a non-trivial linear combination over $\text{GF}(q)$ of $\delta-1$ (or fewer) columns of H_1 , contradicting what we just proved.
- Hence, every nonzero codeword in C has weight $\geq \delta$.
- Thus, $d(C) \geq \delta$. \square

V6g EXAMPLES OF BCH CODES

-164-

EXAMPLE #1

- Let $q=2$, $n=2^r-1$ where $r \geq 2$. Then $\gcd(n, q)=1$ and $m=t$.
- Let β be a generator of $\text{GF}(q^t)^*$.
- The cyclotomic cosets of $2 \pmod{n}$ are $C_0=\{0\}$, $C_1=\{1, 2, 4, \dots, 2^{r-1}\}$,
- Let $g(x)=m_\beta(x)=(x-\beta)(x-\beta^2)(x-\beta^4)\dots(x-\beta^{2^{r-1}})$.
- Then $g(x)$ is the canonical generator for a $(2^r-1, 2^r-1-t)$ -binary BCH code C with designed distance $\delta=3$. So, $d(C) \geq 3$.

- A PCM for C must look like $H = \left[\begin{array}{c|c|c|c|c} \hline & & & & \\ \hline \end{array} \right]_{t \times (2^r-1)}$.
 $\underbrace{\quad \quad \quad \quad \quad}_{\text{all nonzero vectors in } V_r(\mathbb{Z}_2)}$

So, C is a cyclic binary Hamming code (and $d(C)=3$).

- Hence, all binary Hamming codes are cyclic, up to equivalence.

EXAMPLE #2 • Let $q=2$ and $n=23$. Then $m=11$ [$2^m \equiv 1 \pmod{23}$].

• The cyclotomic cosets of $2 \pmod{23}$ are:

$$C_0 = \{0\}, C_1 = \{1, 2, 4, 8, 16, 9, 18, 13, 3, 6, 12\}, C_5 = \{5, 10, 20, 17, 11, 22, 21, 19, 15, 7, 14\}.$$

In fact $x^{2^3-1} = (x+1)(x^6+x^5+x^4+x^3+x^2+1)(x^{10}+x^9+x^8+x^7+x^6+x^5+x^4+x^3+x^2+1)$.

• Let β be an element of order 23 in $GF(2^m)^*$. Let $g(x) = m_\beta(x)$.

Then $g(x)$ is the canonical generator for a $(23, 12)$ -binary BCH code C of designed distance $\delta=5$. Hence $d(C) \geq 5$.

Furthermore, $g(x) \in C$, so $d(C) \leq 7$.

• FACT C is equivalent to the binary Golay code C_{23} .

So, C_{23} is equivalent to a cyclic code.

EXAMPLE #3 • Let $q=2$, $n=2^{16}-1=65535$. Then $\gcd(n, q)=1$ and $m=16$.

• Let $\text{GF}(2^{16}) = \mathbb{Z}_2[\alpha] / (\alpha^{16} + \alpha^5 + \alpha^3 + \alpha^2 + 1)$.

• FACT: α is a generator of $\text{GF}(2^{16})^*$. Let $\beta=\alpha$.

• The cyclotomic cosets of $2 \pmod{65535}$ are: $C_0 = \{0\}$,

$C_1 = \{1, 2, 4, 8, 16, \dots\}$, $C_3 = \{3, 6, 12, 24, \dots\}$, $C_5 = \{5, 10, 20, \dots\}$, $C_7 = \{7, 14, \dots\}$,

$C_9 = \{9, 18, \dots\}$, $C_{11} = \{11, 22, \dots\}$, $C_{13} = \{13, \dots\}$, $C_{15} = \{15, \dots\}$,

$C_{17} = \{17, \dots\}$, $C_{19} = \{19, \dots\}$, $C_{21} = \{21, \dots\}$, $C_{23} = \{23, \dots\}$,

• FACT $C_1, C_3, C_5, \dots, C_{23}$ are distinct and have size 16.

• Let $g(x) = \prod_{i \in \{1, 3, 5, \dots, 23\}} M_{\beta^i}(x)$. Then $\deg(g) = 12 \times 16 = 192$.

• $g(x)$ is the canonical generator for a $(65535, 65343)$ -binary BCH code C with $\delta=25$, so $d(C) \geq 25$.

EXAMPLE #3 (cont'd)

THEOREM (shortening a code) Let C be a systematic (n, k, d) -code over $\text{GF}(q)$, and let $t < k$. Let C' be the code obtained by “shortening” C in its first t coordinate positions, i.e. taking all codewords in C that have 0 in the first t coordinate positions, and then deleting those coordinates. Then C' is an $(n-t, k-t, d')$ -code over $\text{GF}(q)$ with $d' \geq d$.

PROOF Let $G_1 = \left[\begin{array}{c|c} I_1 & \\ \hline 0_1 & A \end{array} \right]_{k \times n}$ be a standard-form GM for C .

Let G_1' be the matrix obtained by deleting the first t rows of G_1 , and then deleting the first t columns. Then G_1' is a $(k-t) \times (n-t)$ GM for C' with $d' \geq d$. \square

EXAMPLE #3 (cont'd)

- C : $(65535, 65343)$ -binary BCH code with $d \geq 25$.

- C is systematic, since C has a GM $G_I =$

$$\left[\begin{array}{c} g(x) \\ g(x) \\ g(x) \\ \vdots \\ g(x) \end{array} \right].$$

- Consider the shortened code C'
obtained by shortening C by $t = 3135$.

- Then C' is a $(32400, 32208)$ -binary code
with distance $d' \geq 25$.

- C' is used (together with an LDPC code) in the DVB-S2 standard
for digital video broadcasting—satellite.

EXAMPLE #4 (QR codes)

1) • Let $q=2$ and $n=15$, so $\gcd(n, q)=1$ and $m=4$.

- Let $G_F(x^4) = \mathbb{Z}_2[x]/(x^4+x+1)$ and $\beta=\alpha$. Then $\text{ord}(\beta)=15$.
- Let $g(x) = m_\beta(x) \cdot m_{\beta^3}(x) \cdot m_{\beta^5}(x) = x^{10} + x^8 + x^5 + x^4 + x^2 + x + 1$. [see slide 151]
- Then $g(x)$ is the canonical generator for a $(15, 5)$ -binary BCH code C with $\delta=7$ (since $\beta, \beta^2, \beta^3, \beta^4, \beta^5, \beta^6$ are roots of $g(x)$). In fact, $d(C)=7$.
- C is used in QR codes to encode the "format data". [There are 32 formats]

2) • $g(x) = x^{11} + x^9 + x^7 + x^6 + x^5 + x + 1$ is the canonical generator for a $(23, 12, 7)$ -BCH code B_{23} that is equivalent to C_{23} .

- Let E_{23} be the set of even-weight codewords in B_{23} . Then E_{23} is a $(23, 11, 8)$ -binary cyclic code with canonical generator $g(x) \cdot (x+1)$.
- Let S_{23} be the $(18, 6, 8)$ -binary code obtained by shortening E_{23} by $t=5$.
- S_{23} is used to encode the "version data". [There are 34 versions]

EXAMPLE #4 (cont'd)

3) A $(255, 231, 25)$ -RS code over $\text{GF}(2^8)$ is used for the payload, more precisely a shortened $(36, 12, 25)$ -code over $\text{GF}(2^8)$ ($t=219$), and a shortened $(37, 13, 25)$ -code over $\text{GF}(2^8)$ ($t=218$). [see slide 175]

DECODING BCH CODES

Several efficient algorithms have been designed for decoding BCH codes. We don't have the time to study them. Instead, we'll study a decoding algorithm for a family of BCH codes called Reed-Solomon (RS) codes.