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· Recall that p is a subfield of GF(pm), Codes
and we can view GF(pm) as an m-dimensional

rector space over P- Block codes
·More generally, for any prime power , Linear codes
GF(qm) GF(q) is a subfield of GF/qm), Cyclic codes
GF(q)

and we can view GF(qm) CH Codes-

as an m-dimensional
RS

vector space overGF(g). codes

· EXAMPLE

· GF(216) is a 16-dimensional v. S. over GF(2).

- J S 3) an 8-dimension v. S. over GF(2).
⑧ 37 3) a 4-dimensional v . S. over GF(24)

.

D C 3) a 2-dimensional v. S. over GF(2).
00 > S >

& I-dimensional v
. S. over GF(210) .
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MINIMAL POLYNOMIALS
GF(qm)

. &
·We call GF(qm) an extension field and GF(q) a subfield

,

GF(q)

DEFINITION Let LEGF(qm). The minimal polynomial of2
over GF(g), denoted macy) , is the monic polynomial of
smallest degree in GF(q) [y] that hasX as a root.

NOTESIf m(y) EGF(q)[y] is a nonzero polynomial with m(d)= 0
,
and

C is its leading coefficient , then in(y) = C"m(y) is a monic polynomial
in GFCq)[y] with (2)=0 and deg(in) =deg(m).
2) More generally, multiplying a polynomial by a nonzero constant

does not change the roots of the polynomial.
3) We have mo(y) = Y

>
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4) If Lo ,
then let t be the order of din GFCqw) , and recall that (((qm )·

Then
,

a is a root of yt-leGF(q)[y] · Hence, there does indeed exist
a monic polynomial of smallest degree in GF(q)[y] having d as a root.

EXAMPLE Let's find the minimal polynomials over GF(2) of elements

in GF(27) = 2[x]/(xk+x+1) = [0
,

1
,
x

,
x+ 13

.

SOLUTION · moly) = y .

· m , (y) =

y+ 1,
· mx(y) = y+ y + 1

.

· mx+ i(y)= y+ y+ 1 .
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PROPERTIES OF MINIMAL POLYNOMIALS

THEOREM Let EGF(qM) .

↓ The minimal polynomial maly) of < over GF(q) is unique .

2) Ma(y) is irreducible over GFCq).
3) deg (mx) =m.
4) IffEGF(q)<y] , then f(x) = 0 > maly) If (y) -

PROOF 1) Suppose m , (y), ma(y) GF(q) [y] are two monic polynomials of the

same smallest degree with m.(c) = mz (d) =0. Consider w(y) = m. (y)-mz(y) .

Then r(d) = m, (d)-M2(d)=0. But deg() < deg(m), so we must have

r(y) =0. Hence
,

m , (y) = mz(y)
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· PROOF OF 2) Suppose that Ma(y) is reducible over GF(q) , say
mc(y) = S(y)(y) where siteGF(q)[y] and 15deg(s) , deg(t)<deg (ML)·
Then ma(d) = s(d) +(c) =0

,
so either s()=0 or (2)= 0

.

In either case we have a contradiction of the minimality of deglind).
We conclude that maly) is irreducible over GF(q).

· PROOF OF 3) Recall that GF(qm) is an m-dimensional rectorspace over GF(g) .

So, the field elements 1
,
6

,
23
, ...,
a are linearly dependent over GF(q)

Thus, we can write arta ,
d+922+ .. ..+amd=0 for some do,9, . . ., am EGF(g)

that are not allo .
Hence

,
& is a root of the nonzero polynomial

m(y) = 9. +a , y+azyz+ .... + Amy EGF(q)[y] of degree Em-
It follows that deg (m) => m.
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· PROOF OF 4) Letfly)EGF(q)[y] . By long division ,
we can write

f(y) = ((y)ma(y) +r(y), where I,reGF(q))] and deg(r)<deg(d).-Y
Now

, f(x) =((x) ma(2) +r(c) = v(c) (since mc(d) = 0).

Hence
, f(x) =0 > (d) = 0

- w(y) = 0 (since deg() <deg (mc)
-> mc(y)( f(y) -



V6 COMPUTING MINIMAL POLYNOMIALS
- 142-

GF(qm)
. &

· We will show that the roots of mc(y) are precisely GF(q)
the "conjugates" of < over GF(q).

· We'll need the following result-

THEOREM Let LEGF(qm) . Then EGF(q) iff 29 =C.

PROOF Since Ba = p for all BEGF(g), the elements of GF(g) are

all roots of the polynomial 9-YEGF(q)[ .

Since this polynomial has

degree o,
it can't have any other roots in GF(q). Thus,diff LEGF(g) .

DEFINITION Let LEGF(qu) . Let t be the smallest positive integer
such that 29t = x (note: m) . Then the set of conjugates of
w

.
r.
t. GF(q) is <(2) = Ed

,
29

,
693,

. . . .,29t -13.
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NOTE The t conjugates in CCC) are distinct. This is because if 29:296
where ofjet-, then 29-19 =0

,
so (29-1)% =0

.
Hence

296-4 h = 0
, so <9 =2

,
which contradicts the minimality of to

THEOREM Let LEGF(qu) .Then the minimal polynomial of< over GF(g)
is m(y) =↑ (y -p) = (y -c)(y-(4)(y-29z) ... (y-29t

-1)
.

BECCC)
PROOF i) Clearly , m(y) is monic and m(d) =0

↳LetE,with espenadeso
i= 0 (

So ,
2

,
20

,
<93, ..., 29

t
are roots of f .

Hence deg(f) t.

>
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PROOF (contd)

ii) Let m(y) (y-) = mi . Then m(y) GF(q)[y)-
BECCC)

We need to prove that m(y) =GF(q) [y] .

Now
, m(y)9 = ↑ (y-p)9 = M(y+

-pl) = ↑ (yp-B)
BEC(2) BECCO) BEC(2)

= m(y) =

m : y :. (#)
i=0

Also, m(y) =(ii)= mig. (**)

Comparing coefficients of :q of (*) and (*) yields m=Mi

for o it- Thus
, MiEGF(q)

,
and so m(y)EGF(q)[y].

iv) We conclude that m(y) is a monic polynomial of smallest degree
in GFCq) [y] that hasaas a root.
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EXAMPLE Consider GF(24) =2[x]/(x*c+1)· Find the 20= 1

L' =L
minimal polynomial of B=c+ over 2

. (Here
, q=2

,
m= ).

22=22
-4

↓SOLUTION When doing computations by hand ,
it's useful to (3=13

*

have a generator d of GF(24), and a table of powers of C. 24 = 2+1

It turns out that =C is a generator of GF(24)*
25=22+L

26 =23+22
Now , B = 20

.
Hence C(B) = Ex, 212, 29, <33 (50 t

=

4).
(7=23+2+1

Thus
, mp(y) = (y-<6)(y-<(2)(y-29)(y-<3)

28 = 27+ 1

= [yc- (c)+<(2)y+<18](y= (c)+c) y +<13]
29 =23+2

= (yz+ x y +23][yz+<y +<1) 21 =22+2+ 1

= y + (c+24)y3 + (1) +25+23)y
=

+ (2 +24)y+<' 2"=23+22+x

= y + y3+ yz+ y+ 1
.

(12 = 23+2+2+1

2B= 23+27+ 1

24 = 23+ 1

215 = 1
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VGC FACTORING OCT OVER GF(g) [Part1]
GOAL Describe the factorization of xL1 over GF(q) - From this, we

will see how canonical generators gl can by chosen so that we have A

non-trivial lower bound on the distance of the cyclic code generated by g(x).

PRELIMINARIES Let p be the characteristic of GF(q) . If god(n,q) # 1,

then write = p where (1 and gcd(,q) = 1.

- AThen 1 = xp
?

1 = (5- DP?
.
So

,
WLOG

,
we shall assume gid(n,q)=1.

NOTATION Let in be the smallest positive integer such that qm= l (modn),

i. e. / (qm-1) . [FACT : Such an m exists]
Let & be a generator of GF(qm)*.
Let B= (qm/ ,

and note that BEGF(qm) .
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· Also, ord() = n
,
and so I

, B , 3, ...., B"" are distinct.

Furthermore
, (B) = (B) = 1: = 1 for each -1.

Hence
,
1

,
B

, 3, ..., "are roots of "-1. So
,
the complete factorization

of x"-1 over GF(qm) is x "-1 = (x- 1) (C-B)(x-B2) . . . - (x-B" ) .

· However
, we seek the factorization of Cc"1 overGF(g).

· Consider B ,
where Oxi-n-1 .

Since i is a root of CC"1 , we have Mile ((-1).
Also , the roots of Mpi6) are (i) = Epi , pin, Big ..., Rightly,
where t is the smallest positive integer such that

iqt = i (modn).
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CYCLOTOMIC COSETS

· The discussion on the previous slides motivates the following definition .

DEFINITION Suppose that god(n,q)= 1
,
and let -1. The

cyclotomic cost of9 mod n containing i is
Ci = i, igmodn, igmodn, ....., iq+modn3,

where t is the smallest positive integer such that iqt= i (mod n).
Also, C = [Con-13 is the set of cyclotomic cosets ofa mod n .

· EXAMPLE The Cyclotomic cosets of 2 mod 15 (q=2, n=5) are:

Co = 203
,
C = [1

,
2

, 4, 83 = (2 = C4 =Co,

C3 = 53
,
6

,
12

,
93 = Co =(2 = Ca

,
Cs = 25

,
103 = Cio

,

(7 = 27
> 14 ,

13, 13 =Ci=Ci =C. Hence C = [Co
, i,
C

,
Cs

,
C7].
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· As the example suggests, if jeCi , then Cf =Ci -

· NOTE : Mpi (x) = (x-pi)(xc- B=)(x= Biz) .... (xc- piqt - ) =M(- BJ)

is a monic irreducible factor of x -1 over GFCG) of dete Cit.
· This proves the following theorem .

THEOREM Suppose that gcd (n ,q) = 1.

1) The number of monic irreducible factors ofx overGF(q) is equal
to the number of (distinct) cyclotomic cosets ofa mod n.

2) The number of monic irreducible factors of degreed is equal to
the number of (distinct) cyclotomic cosets of a mod n of sized .
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VG FACTORING 1 OVER GF(q) [Part 2]

THEOREM Suppose gcd(n ,q)= 1 . Let in be the smallest positive

integer such that El (modn), and let GF(qr) be an

element of order n.
.
Then the monic irreducible factors of

-1 over GF(q) are Empi) : isn-13
,
where

mpi(x) = M(JC- B5) .

jeCi

NOTE : If jei, then M =m
: ().
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EXAMPLE Factor - 1 over 2
.

(Here q=2, n= 15)
SOLUTION. The cyclotomic cosets of2 mod 15 are Co = [03

,
C = 21

,
2
,4,83,

(3 = 23
,
6
,
12

,
93

,
Cs = 25

,
103

,
C7 = 27

, 14,1, 113 .

So,
,
- 1 has sirreducible

factors over 2
,

one of degree 1 ,
one of degree 2,

and three of degree 4.
· The smallest m for which 2= 1 (mod15) is m =4.

· We need an element BEGF (24) of order 15 . see slide 145

Let's take B= C
, since < is a generator for GF(24)

= 2 [2]/(<4
++)

·

· We then compute : Mp() = x+ Co = 203

mp(x) = ec4+x+ 1 Ci = 21 ,2/ 4,
83

See slide 145 MB3(x) = x4+x3+x+x+ 1 Cz= [3,6 ,
12,93

mp5(x) = x+x+ 1 5 = 25
,
103

mpf(x) = x4+ 3
+ 1 C7 = [7

, 14
,
13

,
113

.

· Thus,
x 1 = ((+ 1)(x7 >+1)(x+

+o+ 1)(x+ + 3+ 1)(x++x3+ 3+x+ 1)
.
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EXAMPLE Determine the number of cyclic subspaces of Vao(3).
SOLUTION · First

, we observe that (9-1 = (x1)*

·To determine the factorization pattern of x-1 over 3
,

we find the

cyclotomic cosets of q= 3 modulo = 10 :

Co = 203
, (1 = 2 1

,
3
,
9

,
73

,
(2 = 22 ,

6
,
8

,
43

,
Cs = 25].

·Thus
,
(c90-1 = [fofif2fs]

,
where fo, fi,z, s E3[x] are monic

irred. polynomials over 3 ,
and deg(fo)= 1

, deg(f) =4 , deg (2)=4, deg(s)=1
.

· Hence , the number of monic factors of x90-1 over 3 is 10X10X10X10 = 10000
.

This is also the number of cyclic subspaces of Vao(3).

NOTE fi(x) = Mpi(x) , where B is an element of order 10 in GF(34).
In fact, x- 1 = (x+ 1)(x+2)(x4+ 3+xc+x+ 1)(cc4+23+x

=

2x+1)
.
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VGC BCH CODES : DEFINITION
· Discovered in 1960 by R .C.Bose and D

. Ray-Chaudhuri, and

independently in 1959 by A.Hocquenghem.

· A BCH code is a cyclic code that is constructed so that a

non-trivial lower bound is known on its distance
.

SETUP Suppose gcd(n ,q) = 1
.

· Let m be the smallest positive integer such thatq=l (modn).

· Let a be a generator of GF(qm)*, and let = (q-D/n (so ord() =2).
· Let Mi(x) denote the minimal polynomial of p over GF(q),
for o n-1 . Recall that MBi(X) /(x"- 1).
·We will let Mi (x) = Mimod (x) for in (since =pimodr).
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DEFINITION A BCH code Cover GF(q) of length n and designed distance S
is a cyclic code of length n over GF(q) with canonical generator

g(x) = km Empi () : acia+ 5-23
, for some integera

NOTES 1 m [3 ,
3
,
5
,
7

,
7,
7, 11, 113 = 3x5x7x11.

2) Since each Mpi(x) is a monic irreducible factor of -1, it follows
that g(x) is a monic divisor of -1

. Hence g(x) is indeed the
canonical generator for a cyclic code of length n over GF(q).

3) Among the roots of g(x) are the 8-1 consecutive powers of B :

Ba , pa
+ 1

, pa
+2, ... . . -

> Ba
+ 8-2

=

4) BCH bound : &(C)> S . [Proof in V6f]
5) If a= 1

,
the BCH code is narrow-sense .
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EXAMPLE (BCH code) Let q=3, n= 13. Then m =3 since 31 (mod13)
.

· Consider GF(33) = 3[c]/(23+222+ 1).
· Then 2 is a generator of GF(33)

*
(see next slide).

· Also, B = 22 has order 13.

· Compute the cyclotomic cosets of q=3 mod n= 13 :

Co = 203 Mpo (x) = c+2.

Ci = [1 ,
3
,
93 mp(x) = x3+2x2+2x+2 .

Ca = [2 ,
6

, 53 mp
> (x)= x3+2x+ 2

.

(4 = 34
, 12 ,

103 mp4(x) = x+x7+x+2
.

27 = 27
, 8, 113 mp

= (x) =x+x+ 2
.

>
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EXAMPLE (cont'd)
· mB

: (x) = (x-B2)(x-Bb)(x- B5) 10= 1 ↓
13

=2

2 = d 214=24
= (x-(4)(x-<(2)(x-(10) 22=12 215=222

Sample = ((x2- (2++22)x +<16][x -< 10] 23 =
2+32 2=H22

minimal 24 = 2+22+22 21= 1 2+222

polynomial
= [x?+<°x + (16][7c+223] 25= 2+ 2x 2

18 = 1+dE 39

27= 1+12 (20 = 2+222
2

calculation = c3+ (2+<(c)+ (20+ 233)x+< 4 = 22+ 263 (19 = 4 +22

= x+ 2x+ 2
. 28 = 2+2+22 x

=
= 1+22+ 22

· Let g(x)= mp(x) . mp(x) . MB2(x) 2. = 2+22 + 22 222=
= 1 + x +22

20= 1 + 22 +22223 = 2+ 2+222
= x7 + xb +2x+ x

4
+2x+2 - 2"= 2+↓ 224 = 1+22

· The roots of g(x) are Bo B',Ba, B&B,

S. (12 = 24+22 225= 2+222

226 = 1

Among these roots are Bo B',&3,
so

S= 5 => d7,5 .

· Thus
, g(x) is the canonical generator for a (1, 6)- BCH code overGF(3)

of distance at least 5 .
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VGF BCH BOUND
EXAMPLE Does there exist a block code with parameters q= 2,

n= 127,
M = 264

,
d > 21 ? [slide 25] Vi27(2)

The corresponding sphere packing problem 10

is : Can we place M=264 spheres of o
·

10

radiuse=L = 10 in V127(2) so that CM

no two spheres overlap ?

SOLUTION YES ! We will describe a BCH code with parameters

q = 2
, n= 127 ,

R= 64 , 8 = 21.

We have m = 7 since 271 (mod 127).
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EXAMPLE (ConEd) The cyclotomic cosets of 2 mod 127 are :

Co = 20] · Let B be an element of order 127 in GF(27)*

Ci = [1 , 2 . 4, 8, 16
,
32

,
643 · Then g) =Mp() .mp(x) .Ms () - MB7 (x)

(3 = [3
, 6 , 12

,24 , 48,
96,65] ·mp(x) ·MB"(c)M (7 ·MB6) ·M ()

Cs =55
,

10, 20, 40 , 80,
33

,
66] is a degree-63 monic divisorof -1 over GF(2) .

(7 = [7, 14 ,
28, 56)112 > 97, 673 · The roots of g() include

i
,
I<20.

Ca = 29
,
18,
36

, 72> 17
, 34,

68] ·Thus
, g() is the canonical generator for a

Ci = [11 , 22
,44,

88, 49 ,
98, 69} (127, 64) - binary BCH code with designed

C13 = [13, 26 , 52
,
104, 81 ,

35
, 70] distance 5= 21 (so distance, 21).

Cis = [ 15,30
,

60
, 120, 113

,
99

,
713

C19 = [19
, 38, 76, 25, 50, 100

,
73]

·
.
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VANDERMONDE MATRICES

DEFINITION A Vandermonde matrix over a field F is a matrix of
-

..... 1

the form A(x1,>2, ..., (t) =
1

2

--..

Where - XtEF.
XI z.... X E

DCu
! ! !

t- 1
I-1 x2& CE

- -
Ext

THEOREM det(A,2, . . .,
(t)) - O iff x1,

<2,. . .

.,DC are distinct .

PROOF Perform the following row operations on A :
-

-

Rt= Rt - x, Rt- 1 I I I 0 b 6 I

: to get Al=
O JC2ECI xz-xI -6 60 xt-x

R3k-R3 - x , R2 OC(2-242 133-7 (3 ... OE-T, PE
&

i i SS
Ra- Re- , R , : x12=2

xz1 3t 2
..x ↑↳

Now compute det(A) by
- -

expanding along the first column : 2
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PROOF (contd) -

-

I I ↑ % 0 6 I

CC23 .... +

det (A) =det(A)= (x2 ()(x(z - c) ... (2(t -x) - det x23.... ·

: : :
E-2Cct-2

x3 · 64 0et

By induction ,
detCA) = I CojEci) .

-

(t-DX(t-1)

<jet

Thus
, det(A) o iff , a,...,o are distinct .

COROLLARY The Vandermonde matrix A( ,
2,..., Ct) is

non-singular iff ,2, ..., are distinct.
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THEOREM (BCH bound)

Let C be an (n,) - BCH code overGF(g) with designed distance S.
Then (C) S

.

PROOF· Let gb) be the canonical generator for C . For simplicity,

we'll assume that C is narrow-sense (so a= 1) . Hence,

g(x) = 1cm(mpi (x) : 1 = i = 8- 13,
where BEGF(qm) has order n.

· Now, let eVn(GF(q).
Then reCg(x)((x) >M : (x) (r() > (i) =0 Iful.

1 = i - S- 1

2
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PROOF (conEd) · Let Hi = 3(p2)2
... (z)n

-

I B (3)
2

... (B3)n
-

&

8

. ? : =

1 BS-1 (BS-1)
2

... (8
-1)n

- 1

- -
(8- 1) xn

· Now
,
E (i) =0 =5 HINT = 0.

· Furthermore, no E=5-1 columnsof , are linearly dependent overGF(q) since
-- L

Bil Biz - Bit
-

I
7

itdet (c (iz ...( ↑ = Biiz ... Bit .det Bi Buy , a B
C

: :

(ps-) (p8 1)i2 ... (p5)l (B()8-2 (piz) sa... (pit)
52

- -

=> ) . det (A(", Bie, ..., pit)) #0
,
since il, pic, ..., pitare distinct .

-
Vandermonde matrix

>
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PROOF (conEd)
· Since GF(q)EGF(qm) ,

we also have that no S-1 columns of
Hi are linearly dependent over GF(q).

· Now, if CEC, O
,
w(c) < S

,
then HiC=0 gives o as a

non-trivial linear combination over GF(q) of S-1 (or fewer) columns of
contradicting what we just proved.

· Hence
, every nonzero codeword in C has weight S.

· Thus, dCC) S .
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EXAMPLEA I · Let q= 2, n =2 1 where , 2. Then gid(n ,q)= 1 and m=.

· Let B be a generator of GF(2) *.
·The cyclotomic cosets of 2 mod n are Co=503, CFE1 ,24 ...,

2-
.....

· Let g()= mp(x) = (x- B)(x-B7)(x-BP) - - - (x- B2r - ) .

·Then g(x) is the canonical generator for a (21 , 2 1-2)-binary

BCH code C with designed distance 8 = 3
.
So,

, d(C) >3 .

- T

· A PCM for C must look like H =

0 6
&

rx (2 1)
---
a 11 nonzero rectors inV(2)

So , C is a cyclic binary Hamming code (and d (C) =3).
· Hence

,
all binary Hamming codes are cyclic , up to equivalence.
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EXAMPLE #2·Let q
= 2 and n = 23. Then m = 11 [2" = l (mod 237].

· The cyclotomic cosets of2 mod 23 are :
↓

Co = 203
, C = 21

,
2

, 4 ,
8

,
16

,
9

,
18

,
13

,
3

,
6
>
123

,
(5= 25

,
10 , 20

,
17, 11

,
22,

21
,19

,
15

,
7
,
143

-

In fact x
23

- 1 = (x+1)(x"+x+x7+x+2+x+1)(x"+x+x+x+x4+x+1)

· Let B be an element of order 23 in GF(2")*. Let g(x) = Mp(X)·
Then g(x) is the canonical generator for a (23

,
12) -binary BCH code C

of designed distance S=5
.

Hence d (C) 5.

Furthermore , g(x)EC,
so d() 7.

· FACT C is equivalent to the binary Golay Code C23.
So, C23 is equivalent to a cyclic code.
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EXAMPLE #3 · Let q= 2, n= 211 = 65535. Then gcd(,q)= 1 and m= 16.

· Let GF(21) = 2[c]/(d"+25+23 +22+ 1) .
· FACT : ↓ is a generator of GF(216)*. Let B=2.

· The cyclotomic cosets of 2mod 65535 are : Co = [03,
C = 31

,
2
, 4 ,

8
,

16, ... 3 , (2 =23
,

6
, 12

, 24. ... 3 ,
Cs = 25

, 10, 20, ... 3 ,
C7 =27,14) ... 3,Y

Ca = 29
,
18, ... 3 ,

Cu = [11
,
22

, ...
3

,
C = [13

, ... 3
,
Cis =215

, ...3,
(7 = [17

, ... 3
,
(19 = [19

, ... 3
,
(21 = [21

, ...
3

,
C23 = 223

, ... 3
, ......

· FACT C, Ca ,
Cs, . . .

.,
223 are distinct and have size 16-

· Let g(x) = ↑ Mpi (x) - Then deg (g) = 12x 16 = 192 .

:E [1 ,
3
,
5
, . . . , 233

· g(x) is the canonical generator for a (65535,
65343)-binary

BCH code C with 8 =25
,

so dCC), 25.

7
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EXAMPLE #3 (contd)

THEOREM (Shortening a code) Let C be a systematic (n ,
R

,d)-code over GF(g);
and let R . Let C'be the code obtained by "shortening" (in its first
t coordinate positions ,

i

.e. taking all codewords in C that have o in

the first t coordinate positions ,
and then deleting those coordinates.

Then C' is an (n-t , R-E,
d)-code over GF(q) with d'd.

- -

PROOF Let G =

"..., A
be a standard-form GM for C.

-

Rxn

Let G'be the matrix obtained by deleting the first t rows ofG,
and then deleting the first t columns. Then G'is a (R-E) x (n-t)
GM for C'with dd .

7
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EXAMPLE #3 (cont'd)
· C : (65535, 65343) - binary BCH code with d 25

.

-
-

g(x)
· C is systematic, since C has a GM G=

g(x)

· Consider the shortened code C
g(x)

0

...

&

obtained by shorteningC by t= 33135 . -
g(X)

-

· Then C' is a (32400,
32208) - binary code

with distance d'725 .

· C'is used (together with an LDPC code) in the DVB-S2 standard

for digital video broadcasting- satellite-
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EXAMPLE 4 (QR codes)
1) · Letq= 2 and n = 15

, so god (n , q)= 1 and m = 1 .+

· Let GF(24) =2[]/(X+2+ 1) and p= c. Then ord() = 15.

· Let g(x)= mp(x) . mB3(x) . ms(x) = x1+x8+x+x4+x+ + 1
. [Seisi
- -

· Then g(x) is the canonical generator for a (15
,5) -binary BCH code C

with =7 (since B ,

2

,
3

,
4
,

&
,

6
are roots of g(x)). In fact, d (C) =7

.

· Cis used in QR codes to encode the "format data". [There are 32 formats]

2) · g(x)= x"+x+ x7+x+x5+x+ 1 is the canonical generator for a

(23
,
12

, 7) - BCH code B23 that is equivalent to C23 .

· Let E23 be the set of even-weight codewords in B23. Then E23 is

a (23, 11 , 8) -binary cyclic code with canonical generator g(x) · (x+1)·
· Let S23 be the (18, 6, 8) -binary code obtained by shortening 23 by =5

.

· S23 is used to encode the "version data". [There
are 34 versions]

>
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EXAMPLE #4 (contd)

3) A (255,
231

,
25)-RS code over GF(28) is used for the payload,

more precisely a shortened (36
,

12,25)-code over GF(28) (t=219)
>

and a shortened (37
, 13,
25)-code over GF(28) (t= 218)

.
[see slide 175]

DECODING BCH CODES

Several efficient algorithms have been designed for decoding BCH codes.
We don't have the time to study them. Instead,

we'll study a

decoding algorithm for a family of BCH codes called
Reed-Solomon (RS) codes .


