Error-Correcting Codes: Solutions to a selection of the Exercises
Alfred Menezes

1. Distance of a code
Let C = {c1,¢2,c3} be an [n, 3]-binary code of distance d, and suppose that d(C) = d > 2n/3.
Without loss of generality, we can suppose that ¢; = 0 and d(c1, ¢2) = d. Suppose that ¢3 has d’' 1’s
(and n — d’' 0’s), where d’ > d. Now, suppose that the number of coordinate positions in which co
has a 0 and ¢3 a 1 is z, where 0 < x < n — d. Then the number of coordinate positions in which ¢y
and cg both have a 0 is n — d — z. Hence, the number of coordinate positions in which ¢, has a 1
and c3 a0is (n—d)—(n—d—x)=d—d + z. Thus,

d(ca,c3) =x+ (d—d +z)=(d—d)+ 2z <2z <2(n—d) <2(n/3),

which contradicts d(C) > 2n/3. Hence d(C) < 2n/3.

2. Telephone numbers #1

(a)

If the assignment were possible, then the set of telephone numbers would form a block code
over the decimal alphabet (of size ¢ = 10) with parameters n = 10, M = 110,000,000, and
d = 3. For these parameters, the sphere packing bound is violated. Hence such a code does
not exist, whence the assignment is not possible.

If the assignment were possible, then the set of telephone numbers would form a block code
over the decimal alphabet (of size ¢ = 10) with parameters n = 10, M = 80,000,000, and
d = 3. For these parameters, the sphere packing bound satisfied. Hence such a code might
exist. In fact, such a code does exist, but you wouldn’t be expected to find it on your own.
You will be asked to construct such a code in Problem #17.

4. g-ary symmetric channels

(a)

pr:qT_l,thenfor any 1 <7,k <gq,

1
Pr(Y; = ap| X = a;) = 1

The channel is thus useless since the input has no influence on the output.

Consider the ‘modified’ channel derived from the original channel as follows: If a symbol
a; is received by the original channel, then replace it with a symbol selected uniformly at
random from the remaining symbols, A\ {a;}. We claim that this ‘modified’ channel is a g-ary
symmetric channel with symbol error probability p’ =1 — %.

Proof of claim: Let Z; be the i*® symbol output by the modified channel. Then for all 1 <
Jk<q,

Pr(Z; = ay|X; = a;) = Z Pr(Y; = ;| X; = a;)Pr(a; is replaced with ay,)
1<i<q

= Z Pr(Y; = a|X; = aj)

7’
q—1
1<i<q, 1#k



since Pr(ay is replaced with a;) = 0. Now, by definition of a g-ary symmetric channel,

s ifl#j

It follows that

PT‘(ZZ = ak|Xi = aj) = a

Hence the ‘modified’ channel is a g-ary symmetric channel with symbol error probability p’ =
1 — P
q—1°
q— q—1

The result now follows since — < p < at

[}
)

5. Erasures

(a) Suppose that ¢ € C is transmitted, ¢ < d — 1 symbols are erased during transmission, and r is
received. Suppose that ¢’ # ¢ is a codeword whose components are equal to those in ¢ except
possibly in the ¢ erased positions. Then 1 < d(¢,¢’) <t < d — 1, which contradicts d(C) = d.
Hence, there is a unique codeword ¢ which agrees with r in all its non-erased components.
This codeword can be recovered from r by comparing r to all the codewords, and selecting the
codeword that agrees with r in all its non-erased components.

(b) Since d(C) = d, there exist ¢, € C with ¢ # ¢ and d(c,¢’) = d. Without loss of generality,
suppose that ¢ and ¢ differ in their first d components. Now, suppose that ¢ is transmitted,
the symbols in its first d positions are erased, and r is received. Since ¢ and ¢’ both agree
with r in the n — d non-erased positions, the channel decoder cannot determine with certainty
whether ¢ or ¢ was transmitted.

6. Finite field computations #1

(a) f(x) has no roots in Zi1, so f(x) has no linear factors over Zi; and thus is irreducible over
Z11.

(b) 8z + 1.

(c) 422 + 10z.

7. Finite field computations #2

(a) ¢ =55 =3125.
(b) The polynomials in Zs[z] of degree less than 5.
(c) 5.
(d) i 22*+42% 4 +4.
ii. 2% 4 42? + 2z + 3.
iii. By the frosh’s dream, (v+4)5 = (2°+4) = z+2. Similarly, (z+4)%° = (242)° = 2°+2 = 7,
and (z + 2)'2% = 2% = 2 + 3. Since 6249 = ¢ + (¢ — 1), it follows that
(423 + 222 + o4+ 4)5%Y = (423 + 222 + 1 4 4)31 (423 + 222 + 1 4 4)31H
= (4222 +x+4)(1)
42° + 227 + 2 + 4.

Hence the answer is (z + 3) (423 + 222 + 2 + 4) = 4o* + 423 + 222 + 20 + 2.



8. Irreducibility of polynomials #1
(a) Long division of f(z) by (z — a) yields polynomials ¢(x),r(x) € F[z] such that
f(z) =L4(x)(z — a) +r(x), where deg(r) < 1, (1)

i.e., r(z) is a constant polynomial, say r(z) = c¢. Now, substituting x = a in (1) yields f(a) = c.
Hence f(a) =0 c=0< (z —a)|f(x).

(b) Since f has degree 3, it is reducible over Zs if and only if it has a linear factor in Zs[x]. By
part (a), it has a linear factor in Zs[z] if and only if f(a) = 0 for some a € Z5. But f(0) = 3,
f(1)=3,and f(2) =4, f(3) =2, f(4) = 3. Hence, f is irreducible over Zs.

(c) Since f has degree 4, it is reducible over Zs if and only if it has a linear factor or an irreducible
quadratic factor in Zs[z]. By part (a), it has a linear factor in Zs[x] if and only if f(a) = 0
for some a € Zs. But f(0) =1 and f(1) = 1, so f has no linear factors. The only irreducible
quadratic polynomial in Zg[z] is #? + x + 1, which does not divide f (as seen by long division).
Hence f is irreducible over Z,.

9. Irreducibility of polynomials #2

(a) =21is aroot, so " + 525 + 23 + 52 + 3 has a linear factor, and thus is reducible over Z;.

(b) A degree-7 polynomial is irreducible if and only if it has no roots, no irreducible quadratic
factors, and no irreducible cubic factors. Now, neither 0 nor 1 are roots of f(z) = 27 + 25 +
23 + 2 + 1. Also, f(x) is not divisible by the irreducible quadratic #? + x + 1, nor by the
irreducible cubics 2% +  + 1 and 2® + 22 + 1. Thus f(z) is irreducible over Z.

(c) f(x) =27 +2%+2°+2* 4+ 23+ 2 +1 is divisible by the irreducible quadratic 22 +z + 1. Hence,
f(z) is reducible over Zs.

10. Orders of field elements

(a) f(0) =2, f(1) =2 and f(2) = 2, so f(x) has no roots in Zs and therefore no linear factors
over Zs. Hence, f(z) is irreducible over Zs.

(b) Consider av = 2z. Now the order of « is a divisor of ¢ — 1 =27 — 1 = 26, so ord(a) = 1,2,13
or 26. Now, a # 1, and o? = (27)% = 22 # 1. Also, a'? = (22)13 = (—2)"3 = —213 = —1 since
x has order 13. Thus, we must have ord(a) = 26 and so « is a generator of GF(33)*.

11. Generators #1

(a) Let = al41/2 where « is a generator of GF(q)*. Then 22 = a9 =1, s0 22 — 1 =
(x+1)(x—1)=0. Hence, z+1=0o0r z —1 = 0. But o has order ¢ — 1, whence x — 1 # 0,
so we must have z 4+ 1 = 0. Thus, a(¢=D/2 = —1,

(b) Let ¢ = 7 and consider GF(q) = Z7. Let & = 6 € Z7. Then a(=1/2 = 63 = (-1)3 = —1

(mod 7), but 6 has order 2 in Z7 and so is not a generator of Z3.

15. Linear codes #1

(a) n =17, k=3 (since H has rank 4), M = 33 = 27.



By performing elementary row operations on H, we get the matrix

0011000
, 1110010 0]

H=1902001 0| AH

2100001

from which we can derive the generator matrix

1000201
G=[I)-A"]=]0100 2 0 2
001 2010

) Since H is a parity-check matrix for C, it is also a generator matrix for C*.

Length is 7, dimension is 4, number of codewords is 3* = 81.

) The parity-check matrix H of C' has no zero columns, nor is any column a multiple of another

column, so d > 3. However, column 1 of H is the sum of columns 2 and 7, so d = 3.

G is a parity-check matrix for Ct. It has no zero columns, but the third and sixth columns
are equal, so d- = 2.

19. Even-weights and odd-weights

(a)
(b)

We have w(z +y) = w(z) + w(y) — 2¢, where ¢ is the number of coordinate of positions in
which both x and y are 1. So, if w(x) and w(y) are both even, then w(x + y) is also even.

The columns of H are nonzero (since they have odd weight) and distinct, and so d(C) > 3. Now
suppose that three columns of H are linearly dependent over Zy. Without loss of generality,
suppose that this is the first three columns, so ajhi + ashs + aghs = 0 for aq, o, a3 € Zo,
and where the «; are not all 0. Now, if any of the «; is 0, then we have a linear dependency
of one or two columns of H, which is impossible. Hence, each «a; is 1, so hy + hy + hg = 0.
But since w(hy), w(hg) and w(hs) are odd, it follows from arguments similar to the one in (a)
that w(hy + ho + hg) is odd, which contradicts w(hy + he + h3) = w(0) = 0. Hence, no three
columns of H are linearly dependent over Zs, so d(C) > 4.

20. Telephone numbers #2

(a)

(b)

Since H is a 2 x 10 matrix of rank 2, C'is a (10,8) code. Since none of the columns of H are
zero, and no column is a multiple of another column, it follows that C' has distance at least
3. Finally, since C has at least one codeword of weight 3, e.g. (1,9,1,0,0,0,0,0,0,0), we have
d(C) = 3.

A generator matrix for C' is

N Wk Lo 0o ©
S OO R OO OO
OO O OO oo
O OO OO oo
_ o OO oo oo

0 O Ui Wi
OO OO OO oo
[leleleloNBel e
[N elelNeBel =N
OO oo+ O OO




(¢) Consider the codeword ¢ = (1,9,1,0,0,0,0,0,0,0) in D; ¢ is the first row of G. Now the word
10c = (10,2,10,0,0,0,0,0,0,0) is not in D. Hence the codewords in D are not closed under
scalar multiplication, and so D is not a linear code.

(d) Note that D is a subset of C, and |D| > 2. Therefore, since the distance between any two
distinct codewords in C' is at least 3, it follows that that the distance between any two distinct
codewords in D is also at least 3. Now, consider the first two rows ¢; = (1,9,1,0,0,0,0,0,0,0)
c2 = (2,8,0,1,0,0,0,0,0,0) of G. Then ¢3 = 2¢; = (2,7,2,0,0,0,0,0,0,0) € C. Since none
of the components of ¢z and c3 are 10, we have c2,c3 € D. And, since d(c2,c3) = 3, we have
d(D) = 3.

(e) Since D C C, we can use the parity-check matrix H and any single-error correcting algorithm
to decode r. However, we have to make sure that if the decoded word has a component that
is 10 then it is rejected — since such words would have never been sent.

Let the columns of H be denoted h;, 1 < i < 10. The decoding algorithm is:
i) Compute the syndrome s = Hr’.
ii) If s =0 then
If no component of r is 10 then accept r.
Else reject r.

iii) Check whether s = Ah; for some A € Z;; and some i € [1,10]; if s cannot be written in
this form then reject r.
Otherwise, let ¢ = r — Ae;, where e; denotes the ith unit vector.
If any component of ¢ is 10, then reject r; else decode r to c.

(f) Accept 7.
(g) Reject 7.
(h) Decode r to (9,2,3,0,2,4,0,6,9,9).

21. Linear code over GF'(4)

(a) The matrix G is a 3 x 6 matrix over GF(4) of rank 3. Hence, n =6, k = 3.
(b) C has M = ¢* = 43 = 64 codewords.
(c) Since G is of the form [I|A], a parity-check matrix for C' is [~ A”|I]. Hence

1 00
H = 010
0 01

S 9
S = 9
— Qo Q

(d) The columns of H are nonzero, and no two are GF(4)-multiples of each other. Hence d(C) > 3.
We are given that d # 3, so d(C) > 4. The first row of G is a codeword of weight 4. Hence,
d(C) = 4.

22. Distance of the dual code
Let G be a generator matrix for C, whence G is also a PCM for C*. Suppose that d(C+) < k.
Then G has k columns that are linearly dependent over GF(q). Without loss of generality, suppose
that the first £ columns of G are linearly dependent over GF(q). Let A be the k x k matrix that
is the left submatrix of G, so G = [A|B]. Then A is non-singular, so the rows of A are linearly
dependent over GF(q). Thus, there is a nonzero linear combination of the rows of A that gives
the 0 vector (of length k). Taking the same linear combination of the rows of G gives a nonzero



codeword ¢ € C' whose first & components are 0, so ¢ has weight at most n — k. This contradicts
d(C) =n — k4 1. We conclude that d(Ct) = k.

30. New codes from old ones

(a)

Since |C4] > 2, we also have |C| > 2 so C' is non-empty.

Let © = (u1,u1 + v1), ¥y = (ug,us + v9) € C, where uj,us € C; and v1,v9 € Cy. Then
x+y = (u1 + ug,u1 + ug + vy + v2). Since C7 and Cq are closed under addition, we have
u1 +uo € C1 and v1 + vo € Cs. Hence, z +y € C, so C' is closed under addition.

Let @« € GF(q). Then ax = (auj,ou; + avy). Since C; and Cy are closed under scalar
multiplication, we have au; € C1 and av; € C;. Hence, ax € C, so C is closed under scalar
multiplication.

Thus, C is a linear code under GF(q).

Let uy,uy € C1 and vy, vy € Co. Suppose that (ug,u; +v1) = (ug,us + v2). Then u; = uy and
uy + v = ug + vy, the latter giving v; = va. Thus, if (u1,v1) # (ug,v2), then (u1,u; + v1) #
(ug,us + v2). Hence, |C| = |C1| x |Cs| = ¢" x ¢*2 = ¢¥17*2. Since C is a vector space over
GF(q), it follows that the dimension of C' is ky + k.

Let ¢ = (u,u + v) be a nonzero word in C' where v € C; and v € Cy. Suppose first that
u = 0. Then v # 0, so w(v) > 2d and hence w(c) > 2d. Suppose next that u # 0; let
w(u) = d 4+t where t > 0. Now, w(u+v) > w(v) —w(u) > 2d — (d +t) = d — t. Hence,
w(c) = w(u) +w(u+v) > (d+1t) + (d —t) = 2d. Also, if u is a weight-d word in C, then
¢ = (u,u) is in C' and has weight 2d. It follows that w(C) = 2d.

31. Existence of linear codes
Recall that a parity-check matrix H for an (n, k)-code over GF(q) with distance > dis an (n—k)xn
matrix with entries from GF(q) such that no d — 1 (or fewer) columns of H are linearly dependent
over GF(q).
For 1 <j <n-—1,let H; denote an (n — k) x j matrix having the property that no d —1 (or fewer)
of its columns are linearly dependent over GF(q). Now, the number of vectors in GF(q)"* that
are linear combinations of d — 2 or fewer columns of Hj is at most

di (i) (q—1)"

=0

Since 1 < j <n —1, we have (]Z) < (";1) for all 0 < i <d— 2. Hence

and so there exists a vector v € GF(q)" % which is not a linear combination of d — 2 or fewer
columns of H;. This vector can be added as a column to Hj, producing an (n — k) x (j + 1) matrix
H ;1 which also has the property that no d — 1 of its columns are linearly dependent over GF(q).

Note that H; exists, since any non-zero vector in GF(q)

"=k can be used as the column of H;. By

the above argument, we can construct a matrix H,, = H by repeatedly adding columns to Hj.
Hence an (n, k)-code over GF(q) with distance > d exists.

32. Existence of perfect codes #1



(a) Suppose that C' is a perfect code of length n = 27 and distance d = 3 over GF(27). Suppose
that C' has M codewords. Then the sphere packing bound says that

M(1+n(q—1)) =q",

so M =q"/(14+n(qg—1)). But the right hand side is not an integer when ¢ = 27 and n = 27
(since the numerator is a power of 3, whereas the denominator is 703 which is not divisible by
3). Hence, such a code C does not exist.

(b) The Hamming code of order 2 over GF'(27) has length n = 28 and distance d = 3 (and
dimension k = 26).

33. Existence of perfect codes #2

(a) If there exists a perfect binary code of length n = 10, having M codewords, and distance

(@) () (G)] ==
= [(5)+(3) (2)] =7

which is not an integer. Hence no such code exists.

However,

(b) If C is a binary linear code of length n = 10, dimension k, and distance d = 5, then

JONURGIES

Hence

and so k < 4.

34. Distance of perfect codes
Let C be a code of even distance d = 2t. Then e = |(d —1)/2] =t — 1. Let ¢ € C and let r be a
vector such that d(c,r) = ¢t. Note that r is not in the sphere of radius e centered at c¢. Now, if r
were in the sphere of radius e centered at some codeword ¢’ # ¢, then we would have

d(c,d) < d(e,r)+d(r,d) < t+e < d,

which is impossible since the distance of C is d. Hence r is not contained in any of the radius-e
spheres centered at codewords, and so C' is not a perfect code. It follows that a perfect code must
have odd distance.

35. Self-dual codes

(a) Suppose first that C is self-dual, so C = C+. Then C C C+. Also, since C has dimension k
and C has dimension n — k, we have k =n — k, so n = 2k.
Conversely, suppose that C is self-orthogonal and n = 2k. Now C has dimension k and C*
has dimension n — k = 2k — k = k. Hence dim(C)=dim(C+), so C is self-dual.



43.

44.

45.

47.

(b) Let ¢ = (c1,¢2,...,¢,) € C. Since C is self-orthogonal, we have ¢ € C* and hence ¢ - ¢ = 0.
Now, if ¢; = 0 then ¢} = 0, and if ¢; = 1 then ¢ = 1. Hence ¢-c= Y1 ¢ =3, _11=0
(mod 2), and so ¢ has even weight.

(c) Let ¢ = (c1,¢a,...,¢,) € C. Since C is self-orthogonal, we have ¢ € C* and hence ¢ - ¢ = 0.
Now, if ¢; = 0 then c% = 0; if ¢; = 1 then sz = 1; and if ¢; = 2 then cz2 = 1. Hence
coe=Y " 2= > =1 or 21 =0 (mod 3), and so ¢ has weight divisible by 3.

Cyclic codes #1

(a) We need to prove that C1 N Cs is a vector subspace of V;,(F).
First note that 0 € Cy N Cy, so C1 N Cy is non-empty.
Let ¢1, co € C1 N Cy. Then, since C; and Cy are closed under vector addition, we have
c1+cy €Cyand ey +cp € Cy. Hence ¢ +co € Cp NCh.
Let c€ C1NCy and A € F. Then, since C7 and Cs are closed under scalar multiplication, we
have Ac € Cq and A¢ € Cy. Hence Ac € C; N Cs.
We conclude that C7 N Cy is a linear code.
Let ¢ € C1 N Cs. Since C; and Csy are cyclic, 7(c) (the right cyclic shift of ¢) is in C} and in
(5. Hence 7(c) € C1 N Cq, whence C; N Cy is a cyclic code.

(b) Let g(x) =lem(gi(x), g2(x)). Note that g(z) is monic and divides z™ — 1.
Let c(x) € C1 N Cy. Since ¢(x) € C) and ¢(x) € Oy, it follows that g (z)|c(x) and ga(x)|c(z).
Hence g(x)|c(z).
Conversely, if c¢(x) = a(z)g(x), where a(z) € F[z], then c¢(x) € C; since gi(x)|g(z), and
c(x) € Cy since go(x)|g(x). Hence c(x) € C1 N Cy.
It follows that C1 N Cy = {a(x)g(z) : a(x) € Flz]} = (g(z)). Since g(x) is a monic divisor of
™ —1, it follows from the Theorem on slide 108 that g(x) is the canonical generator of C1 NCy.

Cyclic codes #2

(a) The complete factorization of 2% — 1 over Zs3 is 2% — 1 = (x — 1)3(z + 1)3. Thus, the number
of cyclic subspaces in Vg(Z3) is 4 x 4 = 16.

(b) We seek the monic divisor g(z) of 2% — 1 over Zs of highest degree that is also a divisor of
v(r) = 1+ + 222 + 23 + 1. Now, the complete factorization of v(z) over Zg is v(x) =
(x —1)%(x2 +1). Thus, g(x) = (r — 1)? and the dimension of the cyclic code that it generates
isk=6—-2=4.

Cyclic codes #3

Note that since k > 1, C has at least one nonzero codeword, whence w(C) > 1. We will show that
C cannot have any nonzero codewords of weight 1 or 2.

Let v(z) = 2% be a weight-one word, where 0 < i < n — 1. Now, since g(z) # 1 (since k # n), we
have deg(g) > 1. Hence g(x) { 2°. Also, since g(z) | (2" — 1) and = { (z" — 1), we have g(x) { ' for
1 <i<mn-—1. Hence g(z) tv(x),sov & C.

Let v(z) = 2° + 27 be a weight-two word, where 0 < i < j < n — 1. Then v(z) = 2%(1 + 277%).
If g(z) | v(x), then we must have g(z) | (1 + 277%) since = 1 g(x). But this is impossible since
1<j—i<mnandg(x)tal—1foralll</¢<n. Thus, g(z){v(x), and sov ¢ C.

Hence w(C) > 3, whence d(C) > 3.

Error trapping
The received words are decoded to:



(a)
(b)
()

c1 = (11000 00000 10011).
co = (11000 00010 11100).
cs = (10101 11010 11000).

48. Interleaving two cyclic codes

(a)

(d)

For a codeword ¢ € C*, we denote by (a,b) the codewords a € Cj, b € Cy obtained by de-
interleaving c.

Now, let c1,co € C*, and let c3 = ¢1 + co. Then clearly, az = a1 + a2 and bs = by + by. Since
C4 and (s are linear codes, we have az € C7 and bg € (5. Hence c3 € C*. This shows that C*
is closed under addition, so C* is a linear code.

The length of C* is 14. Since C; and Cs each have 2% codewords, the size of C* is 2% x 2% = 28,
Hence the dimension of C* is 8.

Let {a1,az,as,as} be a basis for C, and let {b1,ba,bs,bs} be a basis for Cy. Let ¢y, co,c3,¢4
be the codewords in C* obtained by interleaving a1, as, as,as with the zero codeword, and
let cs,cq,c7,c8 be the codewords in C* obtained by interleaving by, bo, b3, by with the zero
codeword. Then the ¢; must be linearly independent over Zy because if Z§:1 Aic; = 0 where
Ai € Zs, then Z?:l Aia; = 0 and Z?:s Aibirqa = 0, from which it follows that A; = 0 for all
1<i<8.

Recall now that A = {(1101000), (0110100), (0011010), (0001101)} is a basis for C;, and B =
{(1011000), (0101100), (0010110), (0001011)} is a basis for Cy. As a basis for C*, we can take
each vector from A and B interleaved with the zero vector. This gives the following generator
matrix G* for C*:

1 01 000 1 0O0O0O0O0O0 07
001010O0O0O1O0O0O0GO0OO
00001010O0O01O0O00O0
aF — 00000O0O101O0O0O0T1O0
01 0001O01O0O0O0O0O0TO
00010O0O0O1O01O0O0O0O0
000001 O0O0OO0OT1O0T1O0O0
100000001 O0O0O0T1O0 1]

The first row of G* is the codeword ¢ = (1010001 0000000) € C*, but its cyclic shift ¢ =
(0101000 100000) is not. To see this, note that de-interleaving ¢’ and converting to polynomials
gives 0 and 1+ 2 + 23. But 1+ 2 + 23 is not in Cs since it is not divisible by ga(z).

49. Cyclic codes over GF(4)

(a)

Suppose first that C C C+. Since g(x) € C, we have g(x) € C+, and hence g(x) = a(x)h*(z),
for some a(x) € GF(q)[z]. Hence h*(z)|g(x).

Conversely, suppose that h*(z)|g(x). Then g(z) = b(z)h*(z) for some b(x) € GF(q)[x]. Let
¢ € C. Then, since g(x) generates C, we have ¢(z) = d(x)g(z) for some d(z) € GF(q)[x]. This
implies that c(x) = d(z)b(z)h*(z), or h*(z)|c(x). Since h*(x) generates C*, we have ¢ € C*.
Hence C C C+.

As the following long division shows, g(z) = 2° + ax* + 23 + 22 + a2 + 1 is a monic divisor
of 21! — 1 over GF(4).
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Hence, g(z) is the canonical generator for an (11, 6)-cyclic code C' over GF'(4).

(c) Since the dimension of C* is 5, it cannot be the case that C = C*+ or C C C*. To show that
C+ C O, it suffices to show that g(z) | h*(x), where h(z) = (2" —1)/g(z) = 25+ ax® + ax* +
a?2? 4+ a?x + 1. This is shown below:
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50. Double-adjacent errors

(a) Let 2' + 2! and 27 4+ 27*! be two double-adjacent error patterns with i < j. If these are in
the same coset of C, then g(z) | (2 + 2T + 27 + 2771). But

g™l T = P+l (14 2) = (1 x)2t (1 a0,

Since g(z) | (#™ — 1), then ged(g(x),x) = 1, and hence ged(p(z),x) = 1. If g(z) | (1+2)2*(1+
2974, then p(x) | (1+ 277%), which contradicts the hypothesis that p(z) does not divide ! — 1
for any ¢, 1 <t < n—1. Hence, no two distinct double-adjacent error patterns are in the same
coset of C.

(b) We need to prove (i) that no two single error patterns are in the same coset; and (ii) that no
single and double-adjacent error patterns are in the same coset.
For (i), observe that if g(z) | (z' + 27) (where i < j), then g(x) | 2°(1 + 27~%). This implies
that p(z) | (1 + 277%), which is false.
For (ii), observe that if g(x) | (z'+27 +27*1), then (142) | (z°+27(z+1)), whence (1+x) | ¢,
which is impossible.

(c) g(z) = (1 +2)(1+z+2?). Also, g(z) = (1 +2)(1 + 23 + 2%).

51. Minimal polynomials #1



o mg(z) = (z— )z — )z - )z —p) =2 +z+1.
e mgs(z) = (x— B°)(z— B0 =2 +z + 1.
o mgn(z) = (2 — Bz — Bz — B) (@ — B19) = 2t + 43 + 1.

52. Minimal polynomials #2

55. Reversible cyclic codes
Let C be an (n, k)-cyclic code over GF'(q) with canonical generator g(x). Let ¢ = (¢cg,¢1,...,¢n—1) €
Vo (GF(q)). Let c¢(x) be the associated polynomial, and suppose that deg(c) = n — ¢ where ¢ > 1.
Then the vector associated with cg(x) is cg = (¢p—¢, Cn—t—1,-- -, €1, €05 Cn—1, - - -y Cn—e+1), and hence
the polynomial associated with € = (c,_1,¢n_2,...,c1,¢0) is " Lep(x).

(a) (<) Suppose C' is reversible. Let g = (go,91,--.,9/—1) be the vector associated with g(x).

Since g € C, we have g(z) = z* " 1gp(xz) € C. Hence, g(x) | 2" gr(x). Since z { g(z), it
follows that g(x) | gr(X). Finally, since deg(gr) = deg(g) = n — k, it must be the case that
gr(z) = Ag(z) for some \ € GF(q)*.
(=) Suppose that gr(z) = Ag(x) for some A € GF(q)*. Let ¢ € C, so ¢(z) = a(z)g(x) for
some polynomial a(z) € GF(q)[z] of degree at most k — 1. Then cr(z) = ar(z)gr(z), so
cr(z) = Aagr(z)g(z). Thus, cg € C and, since C is cyclic, it follows that ¢ € C. This shows
that C' is reversible.

(b) We have gr(z) = 2" *g(1/x). If a is a oot of g(x), then gr(1/a) = 0 so 1/a is a root of
gr(X). Since deg(g) = deg(gr), it follows that « is a root of g iff 1/« is a root of gr. Now, C
is reversible iff g(x) = Agr(z) for some A € GF(q)*. Since gr and Agr have the same roots, it
follows that C' is reversible iff 1/« is a root of g for every root « of g.

(c) Let m be the smallest positive integer such that ¢" =1 (mod n), and let 8 be an element of
order n in GF(¢™). Since —1 is a power of ¢ modulo n, we can write —1 = ¢ mod n for some
j > 1. Now, p~% = g%t = ("), which is also a root of g(z) since (8")? is a conjugate of 3’
with respect to GF(q). It follows from (b) that C' is reversible.

(d) Let g(z) = lem{mgi(z) : —t <14 <i}. Let o be a root of g(x). Suppose that « is a root of
mgi(z) where —t < i <t whence a = (817 for some j > 0. Then, o~ = (3797, s0 a~ ! is
a root of mg-i(x) where —t < —i < t. It follows that o' is a root of g(z), and so by (b) the
BCH code with canonical generator g(x) is reversible.

58. Constructing BCH codes
The cyclotomic cosets of 2 modulo 31 are:

Co=1{0}, Ci1=1{1,2,4,8,16}, C5={3,6,12,24,17}, Cs={5,10,20,9,18}
Cr ={7,14,28,25,19}, Cy = {11,22,13,26,21}, Ci5 = {15,30,29,27,23}.



(a) The set Cy U C5 U C5 U C7 contains the elements 1 to 10, and has cardinality 20. Hence

g(x) = ma(x)mes(z)mes(x)mer (2)
1+:U2+x4—|—a:6+1‘7+x9+x10+x13+m17+x18+x20

is a canonical generator for the required code.

(b) Let g(z) = mi(x)ma(x)mys(x)mgys(xz). Then g(z) the canonical generator for a (31,15)-
cyclic code C with designed distance 8, since o, 0 < i < 6, are among its roots. Now, let
h(z) = (231 — 1)/g(x). Since,

hz)=1+z+2?+2° +2°)(1+a+ 2%+ 2 +2°) (1 +2° + 2°),
we have

h*(z) = hp(z) = (1+22+23 42" +2°) 1+ o+ 22 + 2 +2°) (1 + 22 + 2°)

= my(x)mgys(x)mq(z).
Hence h*(x) divides g(x). If follows that C' is self-orthogonal.

59. Reed-Solomon codes
For f € GF(q)[z] with deg(f) < k — 1, define the vector ¢(f) = (f(an), f(a2),..., f(an)).

(a) C is clearly non-empty. Now, let f,g € GF(q)[x] be two polynomials of degree at most k — 1,
and let A € GF(q). Then c(f) + c(g) = c(f + g), where f 4+ g € GF(q)[z] has degree at most
k—1; hence C' is closed under addition. Also, A-¢(f) = ¢(\f), where \f € GF(q)[x] has degree
at most k — 1; hence C' is closed under scalar multiplication. Thus, C is a vector subspace over

GF(q).

(b) Clearly, C has length n.

If f,g € GF(q)[x] are two polynomials of degree at kK — 1 and ¢(f) = ¢(g), then (f —g)(a;) =0
for all 1 <i <n, so f— g has at least n roots in GF(q). But f — g has degree < k—1 < n, so
it must be the case that f —g = 0, so f = g. It follows that |C| = ¢*, whence C has dimension
k over GF(q).

Let f be a nonzero polynomial of degree at most k — 1 in GF'(¢q)[z]. Then f can have at most
k—1roots in GF(q), and so ¢(f) has weight at least n—k+1. Thus, d(C) > n—k+1. Now, any
(n, k)-linear code over GF'(q) has distance at most n — k + 1. Thus, we have d(C) =n—k+1.



