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1. Distance of a code
Let C = {c1, c2, c3} be an [n, 3]-binary code of distance d, and suppose that d(C) = d > 2n/3.
Without loss of generality, we can suppose that c1 = 0 and d(c1, c2) = d. Suppose that c3 has d′ 1’s
(and n− d′ 0’s), where d′ ≥ d. Now, suppose that the number of coordinate positions in which c2
has a 0 and c3 a 1 is x, where 0 ≤ x ≤ n− d. Then the number of coordinate positions in which c2
and c3 both have a 0 is n − d − x. Hence, the number of coordinate positions in which c2 has a 1
and c3 a 0 is (n− d′)− (n− d− x) = d− d′ + x. Thus,

d(c2, c3) = x+ (d− d′ + x) = (d− d′) + 2x ≤ 2x ≤ 2(n− d) < 2(n/3),

which contradicts d(C) > 2n/3. Hence d(C) ≤ 2n/3.

2. Telephone numbers #1

(a) If the assignment were possible, then the set of telephone numbers would form a block code
over the decimal alphabet (of size q = 10) with parameters n = 10, M = 110, 000, 000, and
d = 3. For these parameters, the sphere packing bound is violated. Hence such a code does
not exist, whence the assignment is not possible.

(b) If the assignment were possible, then the set of telephone numbers would form a block code
over the decimal alphabet (of size q = 10) with parameters n = 10, M = 80, 000, 000, and
d = 3. For these parameters, the sphere packing bound satisfied. Hence such a code might
exist. In fact, such a code does exist, but you wouldn’t be expected to find it on your own.
You will be asked to construct such a code in Problem #17.

4. q-ary symmetric channels

(a) If p = q−1
q , then for any 1 ≤ j, k ≤ q,

Pr(Yi = ak|Xi = aj) =
1

q
.

The channel is thus useless since the input has no influence on the output.

(b) Consider the ‘modified’ channel derived from the original channel as follows: If a symbol
al is received by the original channel, then replace it with a symbol selected uniformly at
random from the remaining symbols, A\{al}. We claim that this ‘modified’ channel is a q-ary
symmetric channel with symbol error probability p′ = 1− p

q−1 .

Proof of claim: Let Zi be the ith symbol output by the modified channel. Then for all 1 ≤
j, k ≤ q,

Pr(Zi = ak|Xi = aj) =
∑

1≤l≤q
Pr(Yi = al|Xi = aj)Pr(al is replaced with ak)

=
∑

1≤l≤q, l 6=k
Pr(Yi = al|Xi = aj)

1

q − 1
,



since Pr(ak is replaced with ak) = 0. Now, by definition of a q-ary symmetric channel,

Pr(Yi = al|Xi = aj) =

{ p
q−1 if l 6= j

1− p if l = j.

It follows that

Pr(Zi = ak|Xi = aj) =


1
q−1

(
(1− p) + (q − 2) p

q−1

)
=

1− p
q−1

q−1 if j 6= k

1
q−1

(
(q − 1) p

q−1

)
= 1−

(
1− p

q−1

)
if j = k.

Hence the ‘modified’ channel is a q-ary symmetric channel with symbol error probability p′ =
1− p

q−1 .

The result now follows since q−2
q−1 ≤ p

′ < q−1
q .

5. Erasures

(a) Suppose that c ∈ C is transmitted, t ≤ d− 1 symbols are erased during transmission, and r is
received. Suppose that c′ 6= c is a codeword whose components are equal to those in c except
possibly in the t erased positions. Then 1 ≤ d(c, c′) ≤ t ≤ d− 1, which contradicts d(C) = d.
Hence, there is a unique codeword c which agrees with r in all its non-erased components.
This codeword can be recovered from r by comparing r to all the codewords, and selecting the
codeword that agrees with r in all its non-erased components.

(b) Since d(C) = d, there exist c, c′ ∈ C with c 6= c′ and d(c, c′) = d. Without loss of generality,
suppose that c and c′ differ in their first d components. Now, suppose that c is transmitted,
the symbols in its first d positions are erased, and r is received. Since c and c′ both agree
with r in the n− d non-erased positions, the channel decoder cannot determine with certainty
whether c or c′ was transmitted.

6. Finite field computations #1

(a) f(x) has no roots in Z11, so f(x) has no linear factors over Z11 and thus is irreducible over
Z11.

(b) 8x+ 1.

(c) 4x2 + 10x.

7. Finite field computations #2

(a) q = 55 = 3125.

(b) The polynomials in Z5[x] of degree less than 5.

(c) 5.

(d) i. 2x4 + 4x3 + x+ 4.

ii. x3 + 4x2 + 2x+ 3.

iii. By the frosh’s dream, (x+4)5 = (x5+4) = x+2. Similarly, (x+4)25 = (x+2)5 = x5+2 = x,
and (x+ 2)125 = x5 = x+ 3. Since 6249 = q + (q − 1), it follows that

(4x3 + 2x2 + x+ 4)6249 = (4x3 + 2x2 + x+ 4)3125(4x3 + 2x2 + x+ 4)3124

= (4x3 + 2x2 + x+ 4)(1)

= 4x3 + 2x2 + x+ 4.

Hence the answer is (x+ 3)(4x3 + 2x2 + x+ 4) = 4x4 + 4x3 + 2x2 + 2x+ 2.



8. Irreducibility of polynomials #1

(a) Long division of f(x) by (x− a) yields polynomials `(x), r(x) ∈ F [x] such that

f(x) = `(x)(x− a) + r(x), where deg(r) < 1, (1)

i.e., r(x) is a constant polynomial, say r(x) = c. Now, substituting x = a in (1) yields f(a) = c.
Hence f(a) = 0⇔ c = 0⇔ (x− a)|f(x).

(b) Since f has degree 3, it is reducible over Z5 if and only if it has a linear factor in Z5[x]. By
part (a), it has a linear factor in Z5[x] if and only if f(a) = 0 for some a ∈ Z5. But f(0) = 3,
f(1) = 3, and f(2) = 4, f(3) = 2, f(4) = 3. Hence, f is irreducible over Z5.

(c) Since f has degree 4, it is reducible over Z2 if and only if it has a linear factor or an irreducible
quadratic factor in Z2[x]. By part (a), it has a linear factor in Z2[x] if and only if f(a) = 0
for some a ∈ Z2. But f(0) = 1 and f(1) = 1, so f has no linear factors. The only irreducible
quadratic polynomial in Z2[x] is x2 +x+ 1, which does not divide f (as seen by long division).
Hence f is irreducible over Z2.

9. Irreducibility of polynomials #2

(a) x = 2 is a root, so x7 + 5x6 + x3 + 5x+ 3 has a linear factor, and thus is reducible over Z7.

(b) A degree-7 polynomial is irreducible if and only if it has no roots, no irreducible quadratic
factors, and no irreducible cubic factors. Now, neither 0 nor 1 are roots of f(x) = x7 + x6 +
x3 + x + 1. Also, f(x) is not divisible by the irreducible quadratic x2 + x + 1, nor by the
irreducible cubics x3 + x+ 1 and x3 + x2 + 1. Thus f(x) is irreducible over Z2.

(c) f(x) = x7 +x6 +x5 +x4 +x3 +x+1 is divisible by the irreducible quadratic x2 +x+1. Hence,
f(x) is reducible over Z2.

10. Orders of field elements

(a) f(0) = 2, f(1) = 2 and f(2) = 2, so f(x) has no roots in Z3 and therefore no linear factors
over Z3. Hence, f(x) is irreducible over Z3.

(b) Consider α = 2x. Now the order of α is a divisor of q − 1 = 27− 1 = 26, so ord(α) = 1, 2, 13
or 26. Now, α 6= 1, and α2 = (2x)2 = x2 6= 1. Also, α13 = (2x)13 = (−x)13 = −x13 = −1 since
x has order 13. Thus, we must have ord(α) = 26 and so α is a generator of GF (33)∗.

11. Generators #1

(a) Let x = α(q−1)/2, where α is a generator of GF (q)∗. Then x2 = αq−1 = 1, so x2 − 1 =
(x+ 1)(x− 1) = 0. Hence, x+ 1 = 0 or x− 1 = 0. But α has order q − 1, whence x− 1 6= 0,
so we must have x+ 1 = 0. Thus, α(q−1)/2 = −1.

(b) Let q = 7 and consider GF (q) = Z7. Let α = 6 ∈ Z7. Then α(q−1)/2 = 63 = (−1)3 = −1
(mod 7), but 6 has order 2 in Z7 and so is not a generator of Z∗7.

15. Linear codes #1

(a) n = 7, k = 3 (since H has rank 4), M = 33 = 27.



(b) By performing elementary row operations on H, we get the matrix

H ′ =


0 0 1 1 0 0 0
1 1 0 0 1 0 0
0 0 2 0 0 1 0
2 1 0 0 0 0 1

 = [A|I4]

from which we can derive the generator matrix

G =
[
I3| −AT

]
=

 1 0 0 0 2 0 1
0 1 0 0 2 0 2
0 0 1 2 0 1 0

 .
(c) Since H is a parity-check matrix for C, it is also a generator matrix for C⊥.

(d) Length is 7, dimension is 4, number of codewords is 34 = 81.

(e) The parity-check matrix H of C has no zero columns, nor is any column a multiple of another
column, so d ≥ 3. However, column 1 of H is the sum of columns 2 and 7, so d = 3.

(f) G is a parity-check matrix for C⊥. It has no zero columns, but the third and sixth columns
are equal, so d⊥ = 2.

19. Even-weights and odd-weights

(a) We have w(x + y) = w(x) + w(y) − 2t, where t is the number of coordinate of positions in
which both x and y are 1. So, if w(x) and w(y) are both even, then w(x+ y) is also even.

(b) The columns of H are nonzero (since they have odd weight) and distinct, and so d(C) ≥ 3. Now
suppose that three columns of H are linearly dependent over Z2. Without loss of generality,
suppose that this is the first three columns, so α1h1 + α2h2 + α3h3 = 0 for α1, α2, α3 ∈ Z2,
and where the αi are not all 0. Now, if any of the αi is 0, then we have a linear dependency
of one or two columns of H, which is impossible. Hence, each αi is 1, so h1 + h2 + h3 = 0.
But since w(h1), w(h2) and w(h3) are odd, it follows from arguments similar to the one in (a)
that w(h1 + h2 + h3) is odd, which contradicts w(h1 + h2 + h3) = w(0) = 0. Hence, no three
columns of H are linearly dependent over Z2, so d(C) ≥ 4.

20. Telephone numbers #2

(a) Since H is a 2× 10 matrix of rank 2, C is a (10, 8) code. Since none of the columns of H are
zero, and no column is a multiple of another column, it follows that C has distance at least
3. Finally, since C has at least one codeword of weight 3, e.g. (1, 9, 1, 0, 0, 0, 0, 0, 0, 0), we have
d(C) = 3.

(b) A generator matrix for C is

G =



1 9 1 0 0 0 0 0 0 0
2 8 0 1 0 0 0 0 0 0
3 7 0 0 1 0 0 0 0 0
4 6 0 0 0 1 0 0 0 0
5 5 0 0 0 0 1 0 0 0
6 4 0 0 0 0 0 1 0 0
7 3 0 0 0 0 0 0 1 0
8 2 0 0 0 0 0 0 0 1





(c) Consider the codeword c = (1, 9, 1, 0, 0, 0, 0, 0, 0, 0) in D; c is the first row of G. Now the word
10c = (10, 2, 10, 0, 0, 0, 0, 0, 0, 0) is not in D. Hence the codewords in D are not closed under
scalar multiplication, and so D is not a linear code.

(d) Note that D is a subset of C, and |D| ≥ 2. Therefore, since the distance between any two
distinct codewords in C is at least 3, it follows that that the distance between any two distinct
codewords in D is also at least 3. Now, consider the first two rows c1 = (1, 9, 1, 0, 0, 0, 0, 0, 0, 0)
c2 = (2, 8, 0, 1, 0, 0, 0, 0, 0, 0) of G. Then c3 = 2c1 = (2, 7, 2, 0, 0, 0, 0, 0, 0, 0) ∈ C. Since none
of the components of c2 and c3 are 10, we have c2, c3 ∈ D. And, since d(c2, c3) = 3, we have
d(D) = 3.

(e) Since D ⊆ C, we can use the parity-check matrix H and any single-error correcting algorithm
to decode r. However, we have to make sure that if the decoded word has a component that
is 10 then it is rejected – since such words would have never been sent.
Let the columns of H be denoted hi, 1 ≤ i ≤ 10. The decoding algorithm is:

i) Compute the syndrome s = HrT .

ii) If s = 0 then
If no component of r is 10 then accept r.
Else reject r.

iii) Check whether s = λhi for some λ ∈ Z11 and some i ∈ [1, 10]; if s cannot be written in
this form then reject r.
Otherwise, let c = r − λei, where ei denotes the ith unit vector.
If any component of c is 10, then reject r; else decode r to c.

(f) Accept r.

(g) Reject r.

(h) Decode r to (9, 2, 3, 0, 2, 4, 0, 6, 9, 9).

21. Linear code over GF (4)

(a) The matrix G is a 3× 6 matrix over GF (4) of rank 3. Hence, n = 6, k = 3.

(b) C has M = qk = 43 = 64 codewords.

(c) Since G is of the form [I|A], a parity-check matrix for C is [−AT |I]. Hence

H =

 1 α α 1 0 0
α 1 α 0 1 0
α α 1 0 0 1

 .
(d) The columns of H are nonzero, and no two are GF (4)-multiples of each other. Hence d(C) ≥ 3.

We are given that d 6= 3, so d(C) ≥ 4. The first row of G is a codeword of weight 4. Hence,
d(C) = 4.

22. Distance of the dual code
Let G be a generator matrix for C, whence G is also a PCM for C⊥. Suppose that d(C⊥) ≤ k.
Then G has k columns that are linearly dependent over GF (q). Without loss of generality, suppose
that the first k columns of G are linearly dependent over GF (q). Let A be the k × k matrix that
is the left submatrix of G, so G = [A|B]. Then A is non-singular, so the rows of A are linearly
dependent over GF (q). Thus, there is a nonzero linear combination of the rows of A that gives
the 0 vector (of length k). Taking the same linear combination of the rows of G gives a nonzero



codeword c ∈ C whose first k components are 0, so c has weight at most n − k. This contradicts
d(C) = n− k + 1. We conclude that d(C⊥) = k.

30. New codes from old ones

(a) Since |C1| ≥ 2, we also have |C| ≥ 2 so C is non-empty.
Let x = (u1, u1 + v1), y = (u2, u2 + v2) ∈ C, where u1, u2 ∈ C1 and v1, v2 ∈ C2. Then
x + y = (u1 + u2, u1 + u2 + v1 + v2). Since C1 and C2 are closed under addition, we have
u1 + u2 ∈ C1 and v1 + v2 ∈ C2. Hence, x+ y ∈ C, so C is closed under addition.
Let α ∈ GF (q). Then αx = (αu1, αu1 + αv1). Since C1 and C2 are closed under scalar
multiplication, we have αu1 ∈ C1 and αv1 ∈ C1. Hence, αx ∈ C, so C is closed under scalar
multiplication.
Thus, C is a linear code under GF (q).

(b) Let u1, u2 ∈ C1 and v1, v2 ∈ C2. Suppose that (u1, u1 + v1) = (u2, u2 + v2). Then u1 = u2 and
u1 + v1 = u2 + v2, the latter giving v1 = v2. Thus, if (u1, v1) 6= (u2, v2), then (u1, u1 + v1) 6=
(u2, u2 + v2). Hence, |C| = |C1| × |C2| = qk1 × qk2 = qk1+k2 . Since C is a vector space over
GF (q), it follows that the dimension of C is k1 + k2.

(c) Let c = (u, u + v) be a nonzero word in C where u ∈ C1 and v ∈ C2. Suppose first that
u = 0. Then v 6= 0, so w(v) ≥ 2d and hence w(c) ≥ 2d. Suppose next that u 6= 0; let
w(u) = d + t where t ≥ 0. Now, w(u + v) ≥ w(v) − w(u) ≥ 2d − (d + t) = d − t. Hence,
w(c) = w(u) + w(u + v) ≥ (d + t) + (d − t) = 2d. Also, if u is a weight-d word in C1, then
c = (u, u) is in C and has weight 2d. It follows that w(C) = 2d.

31. Existence of linear codes
Recall that a parity-check matrix H for an (n, k)-code over GF (q) with distance ≥ d is an (n−k)×n
matrix with entries from GF (q) such that no d− 1 (or fewer) columns of H are linearly dependent
over GF (q).
For 1 ≤ j ≤ n− 1, let Hj denote an (n− k)× j matrix having the property that no d− 1 (or fewer)
of its columns are linearly dependent over GF (q). Now, the number of vectors in GF (q)n−k that
are linear combinations of d− 2 or fewer columns of Hj is at most

d−2∑
i=0

(
j

i

)
(q − 1)i.

Since 1 ≤ j ≤ n− 1, we have
(
j
i

)
≤
(
n−1
i

)
for all 0 ≤ i ≤ d− 2. Hence

d−2∑
i=0

(
j

i

)
(q − 1)i ≤

d−2∑
i=0

(
n− 1

i

)
(q − 1)i < qn−k,

and so there exists a vector v ∈ GF (q)n−k which is not a linear combination of d − 2 or fewer
columns of Hj . This vector can be added as a column to Hj , producing an (n− k)× (j+ 1) matrix
Hj+1 which also has the property that no d− 1 of its columns are linearly dependent over GF (q).
Note that H1 exists, since any non-zero vector in GF (q)n−k can be used as the column of H1. By
the above argument, we can construct a matrix Hn = H by repeatedly adding columns to H1.
Hence an (n, k)-code over GF (q) with distance ≥ d exists.

32. Existence of perfect codes #1



(a) Suppose that C is a perfect code of length n = 27 and distance d = 3 over GF (27). Suppose
that C has M codewords. Then the sphere packing bound says that

M(1 + n(q − 1)) = qn,

so M = qn/(1 + n(q − 1)). But the right hand side is not an integer when q = 27 and n = 27
(since the numerator is a power of 3, whereas the denominator is 703 which is not divisible by
3). Hence, such a code C does not exist.

(b) The Hamming code of order 2 over GF (27) has length n = 28 and distance d = 3 (and
dimension k = 26).

33. Existence of perfect codes #2

(a) If there exists a perfect binary code of length n = 10, having M codewords, and distance
d = 5, then

M

[(
10

0

)
+

(
10

1

)
+

(
10

2

)]
= 210.

However,

M = 210/

[(
10

0

)
+

(
10

1

)
+

(
10

2

)]
=

128

7
,

which is not an integer. Hence no such code exists.

(b) If C is a binary linear code of length n = 10, dimension k, and distance d = 5, then

2k
[(

10

0

)
+

(
10

1

)
+

(
10

2

)]
≤ 210.

Hence

2k ≤ 128

7
,

and so k ≤ 4.

34. Distance of perfect codes
Let C be a code of even distance d = 2t. Then e = b(d − 1)/2c = t − 1. Let c ∈ C and let r be a
vector such that d(c, r) = t. Note that r is not in the sphere of radius e centered at c. Now, if r
were in the sphere of radius e centered at some codeword c′ 6= c, then we would have

d(c, c′) ≤ d(c, r) + d(r, c′) ≤ t+ e < d,

which is impossible since the distance of C is d. Hence r is not contained in any of the radius-e
spheres centered at codewords, and so C is not a perfect code. It follows that a perfect code must
have odd distance.

35. Self-dual codes

(a) Suppose first that C is self-dual, so C = C⊥. Then C ⊆ C⊥. Also, since C has dimension k
and C⊥ has dimension n− k, we have k = n− k, so n = 2k.
Conversely, suppose that C is self-orthogonal and n = 2k. Now C has dimension k and C⊥

has dimension n− k = 2k − k = k. Hence dim(C)=dim(C⊥), so C is self-dual.



(b) Let c = (c1, c2, . . . , cn) ∈ C. Since C is self-orthogonal, we have c ∈ C⊥ and hence c · c = 0.
Now, if ci = 0 then c2i = 0, and if ci = 1 then c2i = 1. Hence c · c =

∑n
i=1 c

2
i =

∑
ci=1 1 ≡ 0

(mod 2), and so c has even weight.

(c) Let c = (c1, c2, . . . , cn) ∈ C. Since C is self-orthogonal, we have c ∈ C⊥ and hence c · c = 0.
Now, if ci = 0 then c2i = 0; if ci = 1 then c2i = 1; and if ci = 2 then c2i = 1. Hence
c · c =

∑n
i=1 c

2
i =

∑
ci=1 or 2 1 ≡ 0 (mod 3), and so c has weight divisible by 3.

43. Cyclic codes #1

(a) We need to prove that C1 ∩ C2 is a vector subspace of Vn(F ).
First note that 0 ∈ C1 ∩ C2, so C1 ∩ C2 is non-empty.
Let c1, c2 ∈ C1 ∩ C2. Then, since C1 and C2 are closed under vector addition, we have
c1 + c2 ∈ C1 and c1 + c2 ∈ C2. Hence c1 + c2 ∈ C1 ∩ C2.
Let c ∈ C1 ∩ C2 and λ ∈ F . Then, since C1 and C2 are closed under scalar multiplication, we
have λc ∈ C1 and λc ∈ C2. Hence λc ∈ C1 ∩ C2.
We conclude that C1 ∩ C2 is a linear code.
Let c ∈ C1 ∩ C2. Since C1 and C2 are cyclic, π(c) (the right cyclic shift of c) is in C1 and in
C2. Hence π(c) ∈ C1 ∩ C2, whence C1 ∩ C2 is a cyclic code.

(b) Let g(x) = lcm(g1(x), g2(x)). Note that g(x) is monic and divides xn − 1.
Let c(x) ∈ C1 ∩ C2. Since c(x) ∈ C1 and c(x) ∈ C2, it follows that g1(x)|c(x) and g2(x)|c(x).
Hence g(x)|c(x).
Conversely, if c(x) = a(x)g(x), where a(x) ∈ F [x], then c(x) ∈ C1 since g1(x)|g(x), and
c(x) ∈ C2 since g2(x)|g(x). Hence c(x) ∈ C1 ∩ C2.
It follows that C1 ∩ C2 = {a(x)g(x) : a(x) ∈ F [x]} = 〈g(x)〉. Since g(x) is a monic divisor of
xn−1, it follows from the Theorem on slide 108 that g(x) is the canonical generator of C1∩C2.

44. Cyclic codes #2

(a) The complete factorization of x6 − 1 over Z3 is x6 − 1 = (x− 1)3(x + 1)3. Thus, the number
of cyclic subspaces in V6(Z3) is 4× 4 = 16.

(b) We seek the monic divisor g(x) of x6 − 1 over Z3 of highest degree that is also a divisor of
v(x) = 1 + x + 2x2 + x3 + x4. Now, the complete factorization of v(x) over Z3 is v(x) =
(x− 1)2(x2 + 1). Thus, g(x) = (x− 1)2 and the dimension of the cyclic code that it generates
is k = 6− 2 = 4.

45. Cyclic codes #3
Note that since k ≥ 1, C has at least one nonzero codeword, whence w(C) ≥ 1. We will show that
C cannot have any nonzero codewords of weight 1 or 2.
Let v(x) = xi be a weight-one word, where 0 ≤ i ≤ n − 1. Now, since g(x) 6= 1 (since k 6= n), we
have deg(g) ≥ 1. Hence g(x) - x0. Also, since g(x) | (xn − 1) and x - (xn − 1), we have g(x) - xi for
1 ≤ i ≤ n− 1. Hence g(x) - v(x), so v 6∈ C.
Let v(x) = xi + xj be a weight-two word, where 0 ≤ i < j ≤ n − 1. Then v(x) = xi(1 + xj−i).
If g(x) | v(x), then we must have g(x) | (1 + xj−i) since x - g(x). But this is impossible since
1 ≤ j − i < n and g(x) - x` − 1 for all 1 ≤ ` < n. Thus, g(x) - v(x), and so v 6∈ C.
Hence w(C) ≥ 3, whence d(C) ≥ 3.

47. Error trapping
The received words are decoded to:



(a) c1 = (11000 00000 10011).

(b) c2 = (11000 00010 11100).

(c) c3 = (10101 11010 11000).

48. Interleaving two cyclic codes

(a) For a codeword c ∈ C∗, we denote by (a, b) the codewords a ∈ C1, b ∈ C2 obtained by de-
interleaving c.
Now, let c1, c2 ∈ C∗, and let c3 = c1 + c2. Then clearly, a3 = a1 + a2 and b3 = b1 + b2. Since
C1 and C2 are linear codes, we have a3 ∈ C1 and b3 ∈ C2. Hence c3 ∈ C∗. This shows that C∗

is closed under addition, so C∗ is a linear code.

(b) The length of C∗ is 14. Since C1 and C2 each have 24 codewords, the size of C∗ is 24×24 = 28.
Hence the dimension of C∗ is 8.

(c) Let {a1, a2, a3, a4} be a basis for C1, and let {b1, b2, b3, b4} be a basis for C2. Let c1, c2, c3, c4
be the codewords in C∗ obtained by interleaving a1, a2, a3, a4 with the zero codeword, and
let c5, c6, c7, c8 be the codewords in C∗ obtained by interleaving b1, b2, b3, b4 with the zero
codeword. Then the ci must be linearly independent over Z2 because if

∑8
i=1 λici = 0 where

λi ∈ Z2, then
∑4

i=1 λiai = 0 and
∑8

i=5 λibi+4 = 0, from which it follows that λi = 0 for all
1 ≤ i ≤ 8.
Recall now that A = {(1101000), (0110100), (0011010), (0001101)} is a basis for C1, and B =
{(1011000), (0101100), (0010110), (0001011)} is a basis for C2. As a basis for C∗, we can take
each vector from A and B interleaved with the zero vector. This gives the following generator
matrix G∗ for C∗:

G∗ =



1 0 1 0 0 0 1 0 0 0 0 0 0 0
0 0 1 0 1 0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 1 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 1 0 0 0 1 0
0 1 0 0 0 1 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 1 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0 1 0 1 0 0
0 0 0 0 0 0 0 1 0 0 0 1 0 1


.

(d) The first row of G∗ is the codeword c = (1010001 0000000) ∈ C∗, but its cyclic shift c′ =
(0101000 100000) is not. To see this, note that de-interleaving c′ and converting to polynomials
gives 0 and 1 + x+ x3. But 1 + x+ x3 is not in C2 since it is not divisible by g2(x).

49. Cyclic codes over GF (4)

(a) Suppose first that C ⊆ C⊥. Since g(x) ∈ C, we have g(x) ∈ C⊥, and hence g(x) = a(x)h∗(x),
for some a(x) ∈ GF (q)[x]. Hence h∗(x)|g(x).
Conversely, suppose that h∗(x)|g(x). Then g(x) = b(x)h∗(x) for some b(x) ∈ GF (q)[x]. Let
c ∈ C. Then, since g(x) generates C, we have c(x) = d(x)g(x) for some d(x) ∈ GF (q)[x]. This
implies that c(x) = d(x)b(x)h∗(x), or h∗(x)|c(x). Since h∗(x) generates C⊥, we have c ∈ C⊥.
Hence C ⊆ C⊥.

(b) As the following long division shows, g(x) = x5 + αx4 + x3 + x2 + α2x+ 1 is a monic divisor
of x11 − 1 over GF (4).



Hence, g(x) is the canonical generator for an (11, 6)-cyclic code C over GF (4).

(c) Since the dimension of C⊥ is 5, it cannot be the case that C = C⊥ or C ⊆ C⊥. To show that
C⊥ ⊆ C, it suffices to show that g(x) | h∗(x), where h(x) = (x11− 1)/g(x) = x6 +αx5 +αx4 +
α2x2 + α2x+ 1. This is shown below:

50. Double-adjacent errors

(a) Let xi + xi+1 and xj + xj+1 be two double-adjacent error patterns with i < j. If these are in
the same coset of C, then g(x) | (xi + xi+1 + xj + xj+1). But

xi + xi+1 + xj + xj+1 = xi(1 + x) + xj(1 + x) = (1 + x)xi(1 + xj−i).

Since g(x) | (xn− 1), then gcd(g(x), x) = 1, and hence gcd(p(x), x) = 1. If g(x) | (1 +x)xi(1 +
xj−i), then p(x) | (1 +xj−i), which contradicts the hypothesis that p(x) does not divide xt− 1
for any t, 1 ≤ t ≤ n−1. Hence, no two distinct double-adjacent error patterns are in the same
coset of C.

(b) We need to prove (i) that no two single error patterns are in the same coset; and (ii) that no
single and double-adjacent error patterns are in the same coset.
For (i), observe that if g(x) | (xi + xj) (where i < j), then g(x) | xi(1 + xj−i). This implies
that p(x) | (1 + xj−i), which is false.
For (ii), observe that if g(x) | (xi+xj+xj+1), then (1+x) | (xi+xj(x+1)), whence (1+x) | xi,
which is impossible.

(c) g(x) = (1 + x)(1 + x+ x4). Also, g(x) = (1 + x)(1 + x3 + x4).

51. Minimal polynomials #1



• mβ2(x) = (x− β2)(x− β4)(x− β8)(x− β) = x4 + x+ 1.

• mβ5(x) = (x− β5)(x− β10) = x2 + x+ 1.

• mβ11(x) = (x− β11)(x− β7)(x− β14)(x− β13) = x4 + x3 + 1.

52. Minimal polynomials #2

• m0(x) = x.

• m1(x) = x+ 1

• mα(x) = x3 + x+ 1.

• mα+1(x) = x3 + x2 + 1.

• mα2(x) = x3 + x+ 1.

• mα2+1(x) = x3 + x2 + 1.

• mα2+α(x) = x3 + x+ 1.

• mα2+α+1(x) = x3 + x2 + 1.

55. Reversible cyclic codes
Let C be an (n, k)-cyclic code over GF (q) with canonical generator g(x). Let c = (c0, c1, . . . , cn−1) ∈
Vn(GF (q)). Let c(x) be the associated polynomial, and suppose that deg(c) = n − ` where ` ≥ 1.
Then the vector associated with cR(x) is cR = (cn−`, cn−`−1, . . . , c1, c0, cn−1, . . . , cn−`+1), and hence
the polynomial associated with c = (cn−1, cn−2, . . . , c1, c0) is x`−1cR(x).

(a) (⇐) Suppose C is reversible. Let g = (g0, g1, . . . , g`−1) be the vector associated with g(x).
Since g ∈ C, we have g(x) = xk−1gR(x) ∈ C. Hence, g(x) | xk−1gR(x). Since x - g(x), it
follows that g(x) | gR(X). Finally, since deg(gR) = deg(g) = n − k, it must be the case that
gR(x) = λg(x) for some λ ∈ GF (q)∗.
(⇒) Suppose that gR(x) = λg(x) for some λ ∈ GF (q)∗. Let c ∈ C, so c(x) = a(x)g(x) for
some polynomial a(x) ∈ GF (q)[x] of degree at most k − 1. Then cR(x) = aR(x)gR(x), so
cR(x) = λaR(x)g(x). Thus, cR ∈ C and, since C is cyclic, it follows that c ∈ C. This shows
that C is reversible.

(b) We have gR(x) = xn−kg(1/x). If α is a root of g(x), then gR(1/α) = 0 so 1/α is a root of
gR(X). Since deg(g) = deg(gR), it follows that α is a root of g iff 1/α is a root of gR. Now, C
is reversible iff g(x) = λgR(x) for some λ ∈ GF (q)∗. Since gR and λgR have the same roots, it
follows that C is reversible iff 1/α is a root of g for every root α of g.

(c) Let m be the smallest positive integer such that qm ≡ 1 (mod n), and let β be an element of
order n in GF (qm). Since −1 is a power of q modulo n, we can write −1 = qj mod n for some
j ≥ 1. Now, β−i = βq

ji = (βi)q
j
, which is also a root of g(x) since (βi)q

j
is a conjugate of βi

with respect to GF (q). It follows from (b) that C is reversible.

(d) Let g(x) = lcm{mβi(x) : −t ≤ i ≤ i}. Let α be a root of g(x). Suppose that α is a root of

mβi(x) where −t ≤ i ≤ t whence α = (βi)q
j

for some j ≥ 0. Then, α−1 = (β−i)q
j
, so α−1 is

a root of mβ−i(x) where −t ≤ −i ≤ t. It follows that α−1 is a root of g(x), and so by (b) the
BCH code with canonical generator g(x) is reversible.

58. Constructing BCH codes
The cyclotomic cosets of 2 modulo 31 are:

C0 = {0}, C1 = {1, 2, 4, 8, 16}, C3 = {3, 6, 12, 24, 17}, C5 = {5, 10, 20, 9, 18}

C7 = {7, 14, 28, 25, 19}, C11 = {11, 22, 13, 26, 21}, C15 = {15, 30, 29, 27, 23}.



(a) The set C1 ∪ C3 ∪ C5 ∪ C7 contains the elements 1 to 10, and has cardinality 20. Hence

g(x) = mα(x)mα3(x)mα5(x)mα7(x)

= 1 + x2 + x4 + x6 + x7 + x9 + x10 + x13 + x17 + x18 + x20

is a canonical generator for the required code.

(b) Let g(x) = m1(x)mα(x)mα3(x)mα5(x). Then g(x) the canonical generator for a (31,15)-
cyclic code C with designed distance 8, since αi, 0 ≤ i ≤ 6, are among its roots. Now, let
h(x) = (x31 − 1)/g(x). Since,

h(x) = (1 + x+ x2 + x3 + x5)(1 + x+ x3 + x4 + x5)(1 + x3 + x5),

we have

h∗(x) = hR(x) = (1 + x2 + x3 + x4 + x5)(1 + x+ x2 + x4 + x5)(1 + x2 + x5)

= mα3(x)mα5(x)mα(x).

Hence h∗(x) divides g(x). If follows that C is self-orthogonal.

59. Reed-Solomon codes
For f ∈ GF (q)[x] with deg(f) ≤ k − 1, define the vector c(f) = (f(α1), f(α2), . . . , f(αn)).

(a) C is clearly non-empty. Now, let f, g ∈ GF (q)[x] be two polynomials of degree at most k − 1,
and let λ ∈ GF (q). Then c(f) + c(g) = c(f + g), where f + g ∈ GF (q)[x] has degree at most
k−1; hence C is closed under addition. Also, λ ·c(f) = c(λf), where λf ∈ GF (q)[x] has degree
at most k−1; hence C is closed under scalar multiplication. Thus, C is a vector subspace over
GF (q).

(b) Clearly, C has length n.
If f, g ∈ GF (q)[x] are two polynomials of degree at k−1 and c(f) = c(g), then (f − g)(αi) = 0
for all 1 ≤ i ≤ n, so f − g has at least n roots in GF (q). But f − g has degree ≤ k− 1 < n, so
it must be the case that f − g = 0, so f = g. It follows that |C| = qk, whence C has dimension
k over GF (q).
Let f be a nonzero polynomial of degree at most k− 1 in GF (q)[x]. Then f can have at most
k−1 roots in GF (q), and so c(f) has weight at least n−k+1. Thus, d(C) ≥ n−k+1. Now, any
(n, k)-linear code over GF (q) has distance at most n− k+ 1. Thus, we have d(C) = n− k+ 1.


