

5

AUTHENTICATED ENCRYPTION

CRYPTO 101: Building Blocks

©Alfred Menezes

cryptography101.ca

V5 outline

- ♦ V5a: Fundamental concepts
- ♦ V5b: AES-GCM

V5a

Fundamental concepts

AUTHENTICATED ENCRYPTION

CRYPTO 101: Building Blocks

©Alfred Menezes

cryptography101.ca

Authenticated Encryption (AE)

- ♦ A symmetric-key encryption scheme E provides **confidentiality**.
Example: $E = \text{AES-CBC}$.
- ♦ A MAC scheme provides **authentication** (data origin authentication and data integrity).
Example: HMAC.
- ♦ **Question:** What if confidentiality and authentication are **both** required?
(which is more often the case than not)

Encrypt-and-MAC

- ◆ Alice computes $c = E_{k_1}(m)$ and $t = \text{MAC}_{k_2}(m)$, and sends (c, t) to Bob. Here, m is the plaintext and (k_1, k_2) is the secret key she shares with Bob.
- ◆ Bob decrypts c to obtain $m = E_{k_1}^{-1}(c)$ and then verifies that $t = \text{MAC}_{k_2}(m)$.

This generic method is *not secure*.

For example, the tag $\text{MAC}_{k_2}(m)$ might leak some information about m .

Encrypt-then-MAC

- ♦ Alice computes $c = E_{k_1}(m)$ and $t = \text{MAC}_{k_2}(c)$, and sends (c, t) to Bob. Here, m is the plaintext and (k_1, k_2) is the secret keys she shares with Bob.
- ♦ Bob first verifies that $t = \text{MAC}_{k_2}(c)$ and then decrypts c to obtain $m = E_{k_1}^{-1}(c)$.

This generic method has been proven to be *secure*, provided that the encryption scheme E and the MAC scheme employed are secure.

Special-purpose AE schemes

- ◆ Many special-purpose authenticated encryption schemes have been developed, the most popular of which is using a symmetric-key encryption such as AES in **Galois/Counter Mode (GCM)**.
- ◆ Some of these authenticated encryption schemes also allow for the authentication (but not encryption) of “header” data.

Authenticated encryption security

Definition. An authenticated encryption scheme AE is **AE-secure** if:

- 1) AE is **semantically secure against chosen-plaintext attack**; and
- 2) AE has **ciphertext integrity**, i.e., an adversary who is able to obtain ciphertext-tag pairs $(c_1, t_1), (c_2, t_2), \dots, (c_\ell, t_\ell)$ for plaintext messages m_1, m_2, \dots, m_ℓ of her choosing, is unable to produce a valid ciphertext-tag pair (c, t) where $c \notin \{c_1, c_2, \dots, c_\ell\}$.

V5b

AES-GCM

AUTHENTICATED ENCRYPTION

CRYPTO 101: Building Blocks

©Alfred Menezes

cryptography101.ca

Overview

NIST Special Publication 800-38D
November, 2007

National Institute of
Standards and Technology

Recommendation for Block Cipher Modes of Operation: Galois/Counter Mode (GCM) and GMAC

Morris Dworkin

- ♦ AES-GCM is an authenticated encryption scheme designed by David McGrew and John Viega in 2004.
- ♦ Adopted as a NIST standard (SP 800-38D) in 2007.
- ♦ Uses the CTR mode of encryption and GMAC, a custom-designed MAC scheme.

CTR: CounTeR mode of encryption

Let $k \in_R \{0,1\}^{128}$ be the secret key shared by Alice and Bob. Let $M = (M_1, M_2, \dots, M_u)$ be a plaintext message, where each M_i is a 128-bit block and $u \leq 2^{32} - 2$.

To **encrypt** M , Alice does the following:

1. Select a **nonce** $IV \in \{0,1\}^{96}$.
2. Let $J_0 = IV \| 0^{31} \| 1$.
3. For i from 1 to u do:
$$J_i \leftarrow J_{i-1} + 1 \text{ and compute}$$
$$C_i = \text{AES}_k(J_i) \oplus M_i.$$
4. Send $(IV, C_1, C_2, \dots, C_u)$ to Bob.

To **decrypt**, Bob does the following:

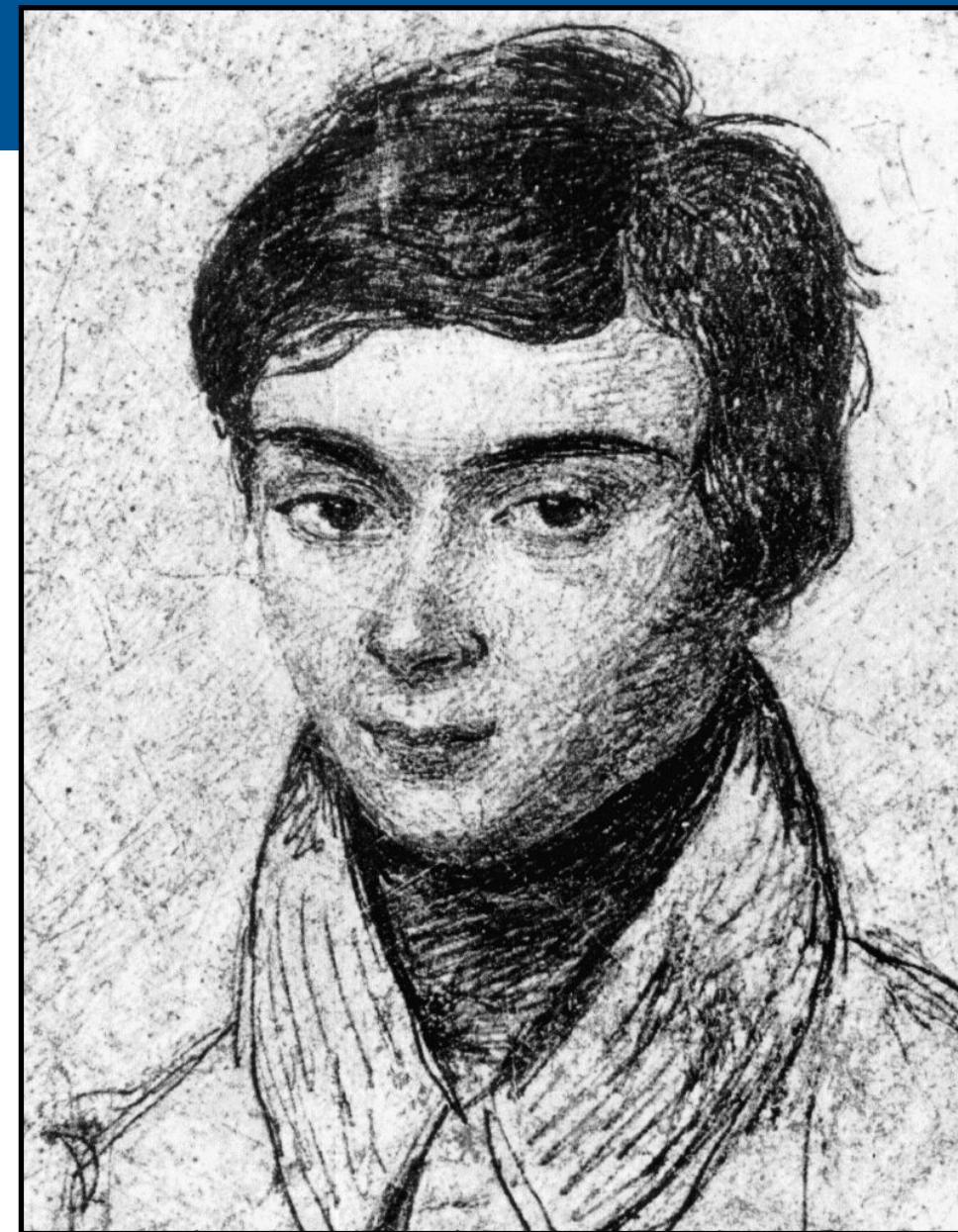
1. Let $J_0 = IV \| 0^{31} \| 1$.
2. For i from 1 to u do:
$$J_i \leftarrow J_{i-1} + 1 \text{ and compute}$$
$$M_i = \text{AES}_k(J_i) \oplus C_i.$$

Notes on CTR mode

1. CTR mode of encryption can be viewed as a stream cipher.
2. As was the case with CBC encryption, identical plaintexts with different IVs result in different ciphertexts.
3. It is critical that the **IV should not be repeated**, but this can be difficult to achieve in practice.
4. Unlike CBC encryption, CTR encryption is **parallelizable**.
5. Note that AES^{-1} is not used.
6. The secret key can have bitlength 128, 192 or 256.

Multiplying blocks

- ◆ Let $a = a_0a_1a_2\dots a_{127}$ be a 128-bit block.
We associate the binary polynomial
 $a(x) = a_0 + a_1x + a_2x^2 + \dots + a_{127}x^{127} \in \mathbb{Z}_2[x]$ with a .
- ◆ Let $f(x) = 1 + x + x^2 + x^7 + x^{128}$.
- ◆ If a and b are 128-bit blocks, then define $c = a \bullet b$ to be the block corresponding to the polynomial $c(x) = a(x) \cdot b(x) \bmod f(x)$.
 - ◆ That is, $c(x)$ is the remainder upon dividing $a(x) \cdot b(x)$ by $f(x)$ in $\mathbb{Z}_2[x]$.
 - ◆ This is multiplication in the **Galois field $GF(2^{128})$** .



Évariste Galois

Galois Message Authentication Code (GMAC)

- ◆ Let $A = (A_1, A_2, \dots, A_v)$, where each A_i is a 128-bit block.
- ◆ Let L be the bitlength of A (encoded as a 128-bit block).
- ◆ Let $k \in_R \{0,1\}^{128}$ be the secret key.

1. Let $J_0 = IV \| 0^{31} \| 1$, where $IV \in \{0,1\}^{96}$ is a **nonce**.
2. Compute $H = \text{AES}_k(0^{128})$.
3. Let $f_A(x) = A_1x^{v+1} + A_2x^v + \dots + A_{v-1}x^3 + A_vx^2 + Lx \in GF(2^{128})[x]$.
4. Compute the **authentication tag** $t = \text{AES}_k(J_0) \oplus f_A(H)$.
5. Send (IV, A, t) .

Computing $f_A(H)$ using Horner's rule

- ◆ **Example:** Let $A = (A_1, A_2, A_3)$.

- ◆ Then $f_A(x) = A_1x^4 + A_2x^3 + A_3x^2 + Lx$.

- ◆ Hence, $f_A(H) = A_1H^4 + A_2H^3 + A_3H^2 + LH$.

- ◆ $f_A(H)$ can be computed using **Horner's rule**:

$$f_A(H) = (((((A_1 \cdot H) + A_2) \cdot H) + A_3) \cdot H) + L \cdot H.$$

- ◆ This requires three additions and four multiplications in $GF(2^{128})$.

- ◆ In general, if A has blocklength v , then computing $f_A(H)$ using Horner's rule requires v additions and $v + 1$ multiplications in $GF(2^{128})$.

Security argument

- ♦ Consider the **simplified tag**: $t' = f_A(H)$.
 - ♦ An adversary can guess the tag t' of a message A with success probability $\frac{1}{2^{128}}$.
 - ♦ She can also guess the tag t' by making a guess H' for H and computing $f_A(H')$. Her success probability is at most $\frac{v+1}{2^{128}}$, where v is the blocklength of A .
 - ♦ However, if the adversary sees a single valid message-tag pair (A, t') , she can solve the polynomial equation $f_A(H) = t'$ for H .
- ♦ To circumvent the aforementioned attack, a second secret $\text{AES}_k(J_0)$ is used to hide t' : $t = \text{AES}_k(J_0) \oplus f_A(H)$. The secret $\text{AES}_k(J_0)$ serves as a **one-time pad** for t' .

Authenticated encryption: AES-GCM

Input:

- ♦ **AAD (Additional Authenticated Data)**, also called **encryption context**: Data to be authenticated (but not encrypted): $A = (A_1, A_2, \dots, A_v)$.
- ♦ Data to be encrypted and authenticated: $M = (M_1, M_2, \dots, M_u)$, $u \leq 2^{32} - 2$.
- ♦ Secret key: $k \in_R \{0,1\}^{128}$, shared between Alice and Bob

Output: (IV, A, C, t) , where

- ♦ IV is a 96-bit initialization vector.
- ♦ $A = (A_1, A_2, \dots, A_v)$ is the additional authenticated data.
- ♦ $C = (C_1, C_2, \dots, C_u)$ is the encrypted / authenticated data.
- ♦ t is a 128-bit authentication tag.

AES-GCM encryption/authentication

Alice does the following:

1. Let $L = L_A \| L_M$, where L_A, L_M are the bitlengths of A, M expressed as 64-bit integers. (L is the **length block**.)
2. Select a **nonce** $IV \in \{0,1\}^{96}$ and let $J_0 = IV \| 0^{31} \| 1$.
3. **Encryption:** For i from 1 to u do:
Compute $J_i = J_{i-1} + 1$ and $C_i = \text{AES}_k(J_i) \oplus M_i$.
4. **Authentication:** Compute $H = \text{AES}_k(0^{128})$.
Compute $t = \text{AES}_k(J_0) \oplus f_{A,C}(H)$.
5. **Output:** (IV, A, C, t) .

Note: $f_{A,C}(x) = A_1x^{u+v+1} + A_2x^{u+v} + \dots + A_{v-1}x^{u+3} + A_vx^{u+2} + C_1x^{u+1} + C_2x^u + \dots + C_{u-1}x^3 + C_ux^2 + Lx$

AES-GCM decryption/authentication

Upon receiving (IV, A, C, t) , Bob does the following:

1. Let $L = L_A \parallel L_C$, where L_A, L_C are the bitlengths of A, C expressed as 64-bit integers.
2. **Authentication:** Compute $H = \text{AES}_k(0^{128})$.
Compute $t' = \text{AES}_k(J_0) \oplus f_{A,C}(H)$.
If $t' = t$ then proceed to decryption; if $t' \neq t$ then reject.
3. **Decryption:** Let $J_0 = IV \parallel 0^{31} \parallel 1$.
For i from 1 to u do:
Compute $J_i = J_{i-1} + 1$ and $M_i = \text{AES}_k(J_i) \oplus C_i$.
4. **Output:** (A, M) .

Some features of AES-GCM

1. Performs both authentication and encryption.
2. Supports **authentication only** (by using empty M).
3. Very fast implementations on Intel and AMD processors because of special **AES-NI** and **PCLMUL** instructions for the AES and \bullet operations.
4. Encryption and decryption can be **parallelized**.
5. AES-GCM can be used in **streaming mode**.
6. The secret key can have bitlength 128, 192 or 256.
7. Security is justified by a security proof:
 - ◆ The original McGrew-Viega security proof (2004) was wrong.
 - ◆ The proof was fixed in 2012 by Iwata-Ohashi-Minematsu.

Performance

Speed benchmarks[†] from 2018 on an Intel Xeon CPU (E3-1220 V2) at 3.10 GHz in 64-bit mode.

[†]Relative speeds will likely be very different on other processors.

Source: www.bearssl.org/speed.html

Algorithm	block length	key length	digest length (bits)	speed (Mbytes /
ChaCha20	—	256	—	323
Triple-DES	64	168	—	21
AES-128	128	128	—	170
AES-128-NI	128	128	—	2426
AES-256	128	256	—	129
AES-256-NI	128	256	—	1830
GMAC	128	128	128	247
GMAC-PCLMUL	128	128	128	1741

IV's should not be repeated

IV's should not be repeated (with the same key k).

- ♦ Suppose an IV is reused, and an eavesdropper captures two transmissions: (IV, A_1, C_1, t_1) , (IV, A_2, C_2, t_2) . Suppose also that M_1 and M_2 have the same blocklengths, and that the eavesdropper knows M_1 .
- ♦ Then $t_1 = \text{AES}_k(J_0) \oplus f_{A_1, C_1}(H)$ and $t_2 = \text{AES}_k(J_0) \oplus f_{A_2, C_2}(H)$, so $t_1 \oplus t_2 = f_{A_1, C_1}(H) \oplus f_{A_2, C_2}(H)$.
- ♦ This polynomial equation can be quickly solved for H , and then $\text{AES}_k(J_0) = t_1 \oplus f_{A_1, C_1}(H)$ can be computed.
- ♦ Thereafter, the adversary can properly encrypt/authenticate any plaintext (of blocklength at most that of M_1).