
HASH FUNCTIONS

CRYPTO 101: Building Blocks
©Alfred Menezes

cryptography101.ca

3

http://cryptography101.ca

3. Hash functions Crypto 101:
Building Blocks © Alfred Menezes

V3 outline

✦ V3a: Fundamental concepts

✦ V3b: Relationships between PR, 2PR, CR

✦ V3c: Generic attacks

✦ V3d: Iterated hash functions

✦ V3e: SHA-256

105

Fundamental concepts
V3a

HASH FUNCTIONS

CRYPTO 101: Building Blocks
©Alfred Menezes

cryptography101.ca

http://cryptography101.ca

3. Hash functions Crypto 101:
Building Blocks © Alfred Menezes

Definitions and terminology

✦ Hash functions play a fundamental role in cryptography

✦ They are used in a variety of cryptographic primitives and protocols.

✦ They are very difficult to design because of stringent security and
performance requirements.

✦ The most commonly used hash functions are:

✦ SHA-1

✦ SHA-2 family: SHA-224, SHA-256, SHA-384, SHA-512

✦ SHA-3 family

107

3. Hash functions Crypto 101:
Building Blocks © Alfred Menezes

What is a hash function?

See:
www.xorbin.com/tools/md5-hash-calculator (MD5)
www.xorbin.com/tools/sha1-hash-calculator (SHA-1)
www.xorbin.com/tools/sha256-hash-calculator (SHA-256)

108

H 356ab3f0dc300198cb2a

Hash functions play a
fundamental role in
cryptography. They
are used in a variety

of cryptographic
protocols. They are
difficult to design

because of stringent
requirements.

http://www.xorbin.com/tools/md5-hash-calculator
http://www.xorbin.com/tools/sha1-hash-calculator
http://www.xorbin.com/tools/sha256-hash-calculator

3. Hash functions Crypto 101:
Building Blocks © Alfred Menezes

Example: SHA-256

SHA-256 : {0,1}* ⟶ {0,1}256

109

3. Hash functions Crypto 101:
Building Blocks © Alfred Menezes

Definition of a hash function

A hash function is a mapping such that:

1. maps binary messages of arbitrary lengths to outputs of a fixed length :
. (is usually large, e.g., , whereas is small, e.g. .)

2. can be efficiently computed for all .

H

H ≤ L n
H : {0,1}≤L → {0,1}n L L = 264 n n = 256
H(x) x ∈ {0,1}≤L

110

✦ is called an -bit hash function. is called the hash or message digest of .

✦ Notes:

✦ The description of a hash function is public; there are no secret keys.

✦ For simplicity, we will usually write instead of .

✦ More generally, a hash function is an efficiently computable function from a set to a
set .

H n H(x) x

{0,1}* {0,1}≤L

S
T

3. Hash functions Crypto 101:
Building Blocks © Alfred Menezes

Toy hash function

✦ (00,1000) is a collision.

✦ 1001 is a preimage of 01.

✦ 10 is a second preimage
of 1011.

H : {0,1}≤4 ⟶ {0,1}2

111

3. Hash functions Crypto 101:
Building Blocks © Alfred Menezes

Some applications of hash functions

✦ Hash functions are used in all kinds of applications, including some that
they were not designed for.

✦ One reason for this widespread use of hash functions is speed.

112

3. Hash functions Crypto 101:
Building Blocks © Alfred Menezes

Preimage resistance (PR)

Definition: A hash function is preimage resistant if,
given a hash value , it is computationally infeasible to find
(with non-negligible success probability) any with .
(is called a preimage of .)

H : {0,1}* ⟶ {0,1}n

y ∈R {0,1}n

x ∈ {0,1}* H(x) = y
x y

113

Password protection on a multi-user computer system:

✦ The server stores [userid, (password)] in a password file.
✦ If an attacker obtains a copy of the password file, she does not learn

any passwords.
✦ This application requires preimage resistance.

H

3. Hash functions Crypto 101:
Building Blocks © Alfred Menezes

2nd preimage resistance (2PR)

Modification Detection Codes (MDCs):

✦ To ensure that a message is not modified by unauthorized means,
one computes and protects from unauthorized
modification.

✦ This is useful in malware protection.

✦ This application requires 2nd preimage resistance.

m
H(m) H(m)

114

Definition: A hash function is 2nd preimage resistant
if, given , it is computationally infeasible to find (with non-
negligible success probability) any with and .

H : {0,1}* ⟶ {0,1}n

x ∈R {0,1}*
x′ ∈ {0,1}* x′ ≠ x H(x′) = H(x)

3. Hash functions Crypto 101:
Building Blocks © Alfred Menezes

Collision resistance (CR)

Message digests for digital signature schemes:

✦ For reasons of efficiency, instead of signing a (long) message , the (much shorter)
message digest is signed.

✦ This application requires preimage-resistance, 2nd preimage resistance, and
collision resistance.

✦ To see why collision resistance is required, suppose that the legitimate signer
Alice can find a collision for . Alice can sign and later claimed to have
signed .

x
h = H(x)

(x1, x2) H x1
x2

115

Definition: A hash function is collision resistant if it is
computationally infeasible to find (with non-negligible success probability)

 with and . Such a pair is called a collision for .

H : {0,1}* ⟶ {0,1}n

x, x′ ∈ {0,1}* x′ ≠ x H(x′) = H(x) (x, x′) H

3. Hash functions Crypto 101:
Building Blocks © Alfred Menezes

Some other applications of hash functions

1. Message Authentication Codes: HMAC.

2. Pseudorandom bit generation:
Distilling random bits from several
“pseudorandom” sources .

3. Key derivation functions (KDF):
Deriving a cryptographic key from a secret.

4. Proof-of-work in cryptocurrencies (Bitcoin).

5. Quantum-safe signature schemes.

s = H(x1, x2, …, xt)
x1, x2, …, xt

116

Relationships between PR, 2PR and CR
V3b

HASH FUNCTIONS

CRYPTO 101: Building Blocks
©Alfred Menezes

cryptography101.ca

http://cryptography101.ca

3. Hash functions Crypto 101:
Building Blocks © Alfred Menezes

Typical cryptographic requirements

118

Definition: A hash function is preimage resistant if,
given a hash value , it is computationally infeasible to find (with
non-negligible success probability) any with .

H : {0,1}* ⟶ {0,1}n

y ∈R {0,1}n

x ∈ {0,1}* H(x) = y

Definition: A hash function is 2nd preimage resistant
if, given , it is computationally infeasible to find (with non-
negligible success probability) any with and .

H : {0,1}* ⟶ {0,1}n

x ∈R {0,1}*
x′ ∈ {0,1}* x′ ≠ x H(x′) = H(x)

Definition: A hash function is collision resistant if it
is computationally infeasible to find (with non-negligible success
probability) with and .

H : {0,1}* ⟶ {0,1}n

x, x′ ∈ {0,1}* x′ ≠ x H(x′) = H(x)

3. Hash functions Crypto 101:
Building Blocks © Alfred Menezes

Breaking PR, 2PR, CR

119

Breaking PR:
Given: .
Required: with .

y ∈R {0,1}n

x ∈ {0,1}* H(x) = y

Breaking 2PR:
Given: .
Required: with and .

x ∈R {0,1}*
x′ ∈ {0,1}* x′ ≠ x H(x′) = H(x)

Breaking CR:
Given: .
Required: with and .

−
x, x′ ∈ {0,1}* x′ ≠ x H(x′) = H(x)

H : {0,1}* ⟶ {0,1}n

3. Hash functions Crypto 101:
Building Blocks © Alfred Menezes

Claim 1: If is CR, then is 2PRH H

Proof: Suppose that is not 2PR.

We’ll show that is not CR.

Select . Since is not 2PR, we can efficiently

find , , with .

Thus, is a collision for that we have efficiently found,

showing that is not CR.

Note: The proof established the contrapositive statement.

H : {0,1}* ⟶ {0,1}n

H
x ∈R {0,1}* H

x′ ∈ {0,1}* x′ ≠ x H(x′) = H(x)
(x, x′) H

H □

120

CR

PR 2PR

3. Hash functions Crypto 101:
Building Blocks © Alfred Menezes

Claim 2: CR does not guarantee PR
Proof: Suppose that is CR.

Consider the hash function defined by

Then is CR (since is).

And, is not PR since preimages can be efficiently found for at least half

of all , namely the hash values that begin with 1.

H : {0,1}* ⟶ {0,1}n

H : {0,1}* ⟶ {0,1}n+1

H H
H
y ∈ {0,1}n+1 □

121

Note: The hash function is rather contrived. For somewhat uniform hash
functions, i.e., hash function for which all hash values have roughly the
same number of preimages, CR does indeed guarantee PR.

H

3. Hash functions Crypto 101:
Building Blocks © Alfred Menezes

Claim 2*: Suppose is somewhat uniform. If is CR, then is PR.H H H

Proof: Suppose that is not PR.

We’ll show that is not CR.

Select and compute . Since is not PR,

we can efficiently find with . Since is

somewhat uniform, we expect that has many preimages, and

thus with very high probability. Thus, is a collision for

 that we have efficiently found, so is not CR.

H : {0,1}* ⟶ {0,1}n

H
x ∈R {0,1}* y = H(x) H

x′ ∈ {0,1}* H(x′) = y H
y

x′ ≠ x (x, x′)
H H □

122

CR

PR 2PR

Note: For the remainder of the course we’ll assume that hash
functions are somewhat uniform.

3. Hash functions Crypto 101:
Building Blocks © Alfred Menezes

Claim 3: PR does not guarantee 2PR

Proof: Suppose that is PR.

Define by

 for all .

Then is PR [Why?].

However, is not 2PR [Why?].

H : {0,1}* ⟶ {0,1}n

H : {0,1}* ⟶ {0,1}n

H(x1, x2, …, xt) = H(0, x2, …, xt) (x1, x2, …, xt) ∈ {0,1}*
H

H □

123

CR

PR 2PR

3. Hash functions Crypto 101:
Building Blocks © Alfred Menezes

Proof: Suppose that is not PR.

We’ll show that is not 2PR.

So, suppose we are given . We compute .

Since is not PR, we can efficiently find with .

Since is somewhat uniform, we expect that with very high

probability. Hence, is a second preimage of that we have

efficiently found.

Thus is not 2PR.

H : {0,1}* ⟶ {0,1}n

H
x ∈R {0,1}* y = H(x)

H x′ ∈ {0,1}* H(x′) = y
H x′ ≠ x

x′ x

H □

124

Claim 4: Suppose is somewhat uniform. If is 2PR, then is PR.H H H

CR

PR 2PR

3. Hash functions Crypto 101:
Building Blocks © Alfred Menezes

Proof: Suppose that is 2PR.

Consider defined by if , and .

 Then is not CR, since is a collision for .

H : {0,1}* ⟶ {0,1}n

H : {0,1}* ⟶ {0,1}n H(x) = H(x) x ≠ 1 H(1) = H(0)
∙ H (0,1) H

125

Claim 5: 2PR does not guarantee CR
CR

PR 2PR
 Suppose now that is not 2PR. We’ll show that is not 2PR.

So, we are given . Since is not 2PR, we can efficiently find , , with

. With probability essentially 1, we can assume that . Hence, .

Now, if , then .

And, if , then .

In either case, we have efficiently found a second preimage for w.r.t.

Hence, is not 2PR, a contradiction. Thus, is 2PR.

∙ H : {0,1}* ⟶ {0,1}n H
x ∈R {0,1}* H x′ ∈ {0,1}* x′ ≠ x

H(x′) = H(x) x ≠ 0,1 H(x) = H(x)
x′ ≠ 1 H(x′) = H(x′) = H(x) = H(x)
x′ = 1 H(x′) = H(1) = H(0) = H(x)

x H .
H H □

3. Hash functions Crypto 101:
Building Blocks © Alfred Menezes

Relationships between PR, 2PR, CR

Let be a hash function.H : {0,1}* ⟶ {0,1}n

126

CR

PR 2PR for somewhat uniform
 hash functions

12*

3

4

5

Generic attacks
V3c

HASH FUNCTIONS

CRYPTO 101: Building Blocks
©Alfred Menezes

cryptography101.ca

http://cryptography101.ca

3. Hash functions Crypto 101:
Building Blocks © Alfred Menezes

Generic attacks

A generic attack on hash functions does not exploit
any properties that the specific hash function might have.

H : {0,1}* ⟶ {0,1}n

128

✦ In the analysis of a generic attack, we view as a random function in
the sense that for each , the hash value was defined
by selecting .

✦ From a security point of view, a random function is an ideal hash
function. However, random functions are not suitable for practical
applications because they cannot be compactly described.

H
x ∈ {0,1}* y = H(x)

y ∈R {0,1}n

3. Hash functions Crypto 101:
Building Blocks © Alfred Menezes

Generic attack for finding preimages

✦ Attack: Given , repeatedly select arbitrary until
.

✦ Analysis: The expected number of hash operations is .

y ∈R {0,1}n x ∈ {0,1}*
H(x) = y

2n

129

✦ This generic attack is infeasible if .

✦ Note: It has been proven that this generic attack for finding preimages is
optimal, i.e., no faster generic attack exists. Of course, for a specific hash
function, there might exist a faster preimage finding algorithm.

n ≥ 128

3. Hash functions Crypto 101:
Building Blocks © Alfred Menezes

Generic attack for finding collisions

✦ Attack: Select arbitrary and store in a
table sorted by first entry. Repeat until a collision is found.

✦ Analysis: By the birthday paradox, the expected number
of hash operations is .

x ∈ {0,1}* (H(x), x)

π2n/2 ≈ 2n

130

✦ This generic attack is infeasible if .

✦ Note: It has been proven that this generic attack for finding collisions is optimal, i.e.,
no faster generic attack exists.

✦ Expected space required: .

✦ Example: If , the expected running time is (feasible), whereas the
expected space required is Tbytes (infeasible).

n ≥ 256

π2n/2 ≈ 2n

n = 128 264

5 × 108

3. Hash functions Crypto 101:
Building Blocks © Alfred Menezes

VW parallel collision search

✦ VW: van Oorschot & Wiener (1993)

✦ Expected number of hash operations: .

✦ Expected space required: negligible.

✦ Easy to parallelize — -fold speedup with processors.

✦ The VW collision-finding algorithm can easily be modified to find
“meaningful” collisions. (See Optional Readings at cryptography101.ca.)

✦ Conclusion: If collision resistance is desired, then use an -bit hash
function with .

≈ 2n

m m

n
n ≥ 256

131

3. Hash functions Crypto 101:
Building Blocks © Alfred Menezes

Parallel collision search (VW method)

✦ Problem: Find a collision for .

✦ Assumption: is a random function.

✦ Notation: Let .
Define a sequence by , for .

Let be the smallest index for which for some ; such a
must exist. Then for all . By the birthday paradox,

. In fact, and .

✦ Now, with overwhelming probability, in which event
 is a collision for .

✦ Question: How to find without using much storage?

H : {0,1}* ⟶ {0,1}n

H

N = 2n

{xi}i≥0 x0 ∈R {0,1}n xi = H(xi−1) i ≥ 1
j xj = xi i < j j

xj+ℓ = xi+ℓ ℓ ≥ 1
E[j] ≈ πN/2 ≈ N E[i] ≈ 1

2 N E[j − i] ≈ 1
2 N

i ≠ 0
(xi−1, xj−1) H

(xi−1, xj−1)

132

x0

x1

x2

x3

x4

x5

xi−2

xi−1

xi

xi+2
xj−1

xi+1
xj

tail

cycle

3. Hash functions Crypto 101:
Building Blocks © Alfred Menezes

Distinguished points

✦ Answer: Only store distinguished points.

✦ Distinguished points: Select an easily-testable
distinguishing property for elements of ,
e.g. leading 32 bits are all 0.
Let be the proportion of elements of that
are distinguished.

✦ VW method: Compute the sequence
and only store the points that are distinguished.

{0,1}n

θ {0,1}n

x0, x1, x2, x3, …

133

x0

x1

x2

x3

x4

x5

xi−2

xi−1

xi

xi+2
xj−1

xi+1
xj

tail

cycle

3. Hash functions Crypto 101:
Building Blocks © Alfred Menezes

VW collision finding

x0

xa

xb

xc

xd

distinguished
points

collision
has

occurred

collision
is

detected

xa

xb xd

xc

xa+1
xa+2

xa+k

3. Hash functions Crypto 101:
Building Blocks © Alfred Menezes

VW collision finding

Stage 1: Detecting a collision

1. Select .

2. Store in a sorted table.

3. . (LP= last point stored)

4. For do:

a. Compute

b. If is distinguished then

i. If is already in the table, say
where , then go to Stage 2.

ii. Store in the table.

iii. .

x0 ∈R {0,1}n

(x0,0,−)
LP ← x0

d = 1,2,3,…
xd = H(xd−1) .

xd

xd xd = xb
b < d

(xd, d, LP)
LP ← xd

135

Stage 2: Finding a collision

1. Set , .

2. Suppose , and set
.

3. Compute

4. For do:

a) Compute .

5. Until .

6. The collision is .

ℓ1 ← b − a ℓ2 ← d − c

ℓ1 ≥ ℓ2
k ← ℓ1 − ℓ2

xa+1, xa+2, …, xa+k .
m = 1,2,3,…

(xa+k+m, xc+m)
xa+k+m = xc+m

(xa+k+m−1, xc+m−1)

xa

xb xd

xc

xa+1
xa+2

xa+k

x0

xa

xb

xc

xd

3. Hash functions Crypto 101:
Building Blocks © Alfred Menezes

VW analysis

✦ Stage 1: Expected number of -evaluations is:

 .

✦ Stage 2: Expected number of -evaluations is (see optional readings).

✦ Overall expected running time:

✦ Expected storage: bits (each table entry has bitlength).

H
πN/2 + 1

θ
≈ N + 1

θ

H ≤ 3
θ

N + 4
θ

.

≈ 3nθ N 3n

136

✦ Example: Consider . Take . Then the expected run time
of VW collision search is -evaluations (feasible), and the expected
storage is 192 Gbytes (negligible).

n = 128 θ = 1/232

264 H

3. Hash functions Crypto 101:
Building Blocks © Alfred Menezes

Parallelizing VW collision search
✦ Run independent copies of VW on each of processors
✦ Report distinguished points to a central server.

m

137

Analysis

✦ Expected time .

✦ Expected storage bits.

≈ 1
m

N + 4
θ

≈ 3nθ N

 Notes

1. Factor- speedup.

2. No communications between processors.

3. Occasional communications with the central server.

m

.
1 2 m3 4

Iterated hash functions
V3d

HASH FUNCTIONS

CRYPTO 101: Building Blocks
©Alfred Menezes

cryptography101.ca

http://cryptography101.ca

3. Hash functions Crypto 101:
Building Blocks © Alfred Menezes

Iterated hash functions (Merkle’s meta method)

Components:

✦ Fixed initializing
value .

✦ Efficiently-
computable
compression function

.

IV ∈ {0,1}n

f : {0,1}n+r → {0,1}n

139

To compute where has bitlength do:

1. Break up into -bit blocks, ,
padding the last block with 0 bits as necessary.

2. Define , the length-block, to hold the
right-justified binary representation of .

3. Define .

4. Compute for .
(The are called chaining variables.)

5. Define .

H(x) x b < 2r

x r x = x1, x2, …, xt

xt+1
b

H0 = IV
Hi = f(Hi−1, xi) i = 1,2,…, t + 1

H′ is
H(x) = Ht+1

IV f

x1

H1
f

x2

H2
f

x3

H3
f

xt+1

H(x)f

xt

Ht

……

3. Hash functions Crypto 101:
Building Blocks © Alfred Menezes

Collision resistance of iterated hash functions

Theorem (Merkle): If the compression function is collision resistant, then
the iterated hash function is also collision resistant.

f
H

140

Merkle’s theorem reduces the problem of designing collision-resistant hash
functions to that of designing collision-resistant compression functions.

IV f

x1

H1
f

x2

H2
f

x3

H3
f

xt+1

H(x)

xt

f
Ht

……..
Ht−1

3. Hash functions Crypto 101:
Building Blocks © Alfred Menezes

Provable security

A major theme in cryptographic research
is to formulate precise security definitions
and assumptions, and then prove that a
cryptographic protocol is secure.

A proof of security is certainly desirable
since it rules out the possibility of attacks
being discovered in the future.

However, it isn’t always easy to assess the
practical security assurances (if any) that
a security proof provides.

Optional reading: anotherlook.ca

141

✦ The assumptions might be
unrealistic, or false, or circular.

✦ The security proof might be
fallacious.

✦ The security model might not
account for certain kinds of realistic
attacks.

✦ The security proof might be
asymptotic.

✦ The security proof might have a
large tightness gap.

http://anotherlook.ca

3. Hash functions Crypto 101:
Building Blocks © Alfred Menezes

Proof of Merkle’s Theorem (is CR is CR)f ⇒H

✦ Suppose that is not CR. We’ll show that is not CR.

✦ Since is not CR, we can efficiently find messages , with
 and .

✦ Let .

✦ Let .

H f

H x, x′ ∈ {0,1}*
x ≠ x′ H(x) = H(x′)

x = x1, x2, …, xt, b = bitlength(x), xt+1 = length block

x′ = x′ 1, x′ 2, …, x′ t′
, b′ = bitlength(x′), x′ t′ +1 = length block

142

IV f

x1

H1
f

x2

H2
f

x3

H3
f

xt+1

H(x)

xt

f
Ht

……..
Ht−1

3. Hash functions Crypto 101:
Building Blocks © Alfred Menezes

Proof of Merkle’s Theorem (2)
✦ We efficiently compute:

143

✦ Since we have .H(x) = H(x′), Ht+1 = H′ t′ +1

3. Hash functions Crypto 101:
Building Blocks © Alfred Menezes

Proof of Merkle’s Theorem (3)
✦ Case 1: Now, if then . Thus, is a

collision for that we have efficiently found.

✦ Case 2: Suppose next that . Then and

✦ Let be the largest index, for which
Such an must exist since .

✦ Then so is a
collision for that we have efficiently found.

✦ Thus, is not collision resistant.

b ≠ b′ , xt+1 ≠ x′ t′ +1 (Ht, xt+1), (H′ t′
, x′ t′ +1)

f

b = b′ t = t′ xt+1 = x′ t+1

i 0 ≤ i ≤ t, (Hi, xi+1) ≠ (H′ i, x′ i+1) .
i x ≠ x′

Hi+1 = f(Hi, xi+1) = f(H′ i, x′ i+1) = H′ i+1, (Hi, xi+1), (H′ i, x′ i+1)
f

f □

144

3. Hash functions Crypto 101:
Building Blocks © Alfred Menezes

MDx-family of hash functions

✦ MDx is a family of iterated hash functions.

✦ MD4 was proposed by Ron Rivest in 1990.

✦ MD4 has 128-bit outputs.

✦ Professor Xiaoyun Wang et al. (2004)
 found collisions for MD4

✦ Leurent (2008) discovered an algorithm for finding
MD4 preimages in operations.2102

145

by hand.

3. Hash functions Crypto 101:
Building Blocks © Alfred Menezes

MD5 hash function

✦ MD5 is a strengthened version of MD4.

✦ Designed by Ron Rivest in 1991.

✦ MD5 has 128-bit outputs.

✦ Wang and Yu (2004) found MD5 collisions in operations.

✦ MD5 collisions can now be found in operations, which takes a few
seconds on a laptop computer.

✦ Sasaki & Aoki (2009) discovered a method for finding MD5 preimages in
 steps.

239

224

2123.4

146

3. Hash functions Crypto 101:
Building Blocks © Alfred Menezes

MD5 hash function (2)

Summary: MD5 should not be used if collision resistance is required, but is
probably okay as a preimage-resistant hash function.

147

✦ MD5 is still used today.

✦ 2006: MD5 was implemented more than 850 times in Microsoft Windows
source code.

✦ 2014: Microsoft issues a patch that restricts the use of MD5 in certificates
in Windows: tinyurl.com/MicrosoftMD5.

http://tinyurl.com/MicrosoftMD5

3. Hash functions Crypto 101:
Building Blocks © Alfred Menezes

Flame malware

✦ Discovered in 2012, Flame malware was a highly
sophisticated espionage tool.

✦ Targeted computers in Iran and the Middle East.

✦ Contains a forged Microsoft certificate for Windows
code signing.

✦ Forged certificate used a new “zero-day MD5
chosen-prefix” collision attack.

✦ Microsoft no longer allows the use of MD5 for code
signing.

148

3. Hash functions Crypto 101:
Building Blocks © Alfred Menezes

SHA-1

✦ Secure Hash Algorithm (SHA) was designed by NSA and published by NIST in 1993
(FIPS 180).

✦ 160-bit iterated hash function, based on MD4.

✦ Slightly modified to SHA-1 (FIPS 180-1) in 1994 in order to fix an
undisclosed security weakness.

✦ Wang et al. (2005) found collisions for SHA in operations.
✦ Wang et al. (2005) discovered a collision-finding algorithm for

SHA-1 that takes operations.

✦ The first SHA-1 collision was found on February 23, 2017.
✦ No preimage or 2nd preimage attacks that are faster than the generic attacks are

known for SHA-1.

239

263

149

3. Hash functions Crypto 101:
Building Blocks © Alfred Menezes

SHA-2 family

✦ In 2001, NSA proposed variable output-length versions of SHA-1.

✦ Output lengths are 224 bits (SHA-224 and SHA-512/224), 256 bit
(SHA-256 and SHA-512/256), 384 bits (SHA-384), and 512 bits
(SHA-512).

✦ 2024: No weaknesses in any of these hash functions have been found.

✦ Note: The security levels of these hash functions against VW collision
finding attacks are the same as the security levels of Triple-DES,
AES-128, AES-192, and AES-256 against exhaustive key search attacks.

✦ The SHA-2 hash functions are standardized in FIPS 180-2.

150

3. Hash functions Crypto 101:
Building Blocks © Alfred Menezes

Summary: Collision resistance of iterated hash functions

151

Hash function
n

Security level
against generic

attack VW attack
(in bits)

Security level after
Prof. Wang’s attacks

(in bits)

MD4 (1990) 128 64 4 (2004)

MD5 (1991) 128 64 39 (2005) —> 24

SHA (1993) 160 80 39 (2005)

SHA-1 (1994) 160 80 63 (2005)

SHA-224 224 112 112

SHA-256 256 128 128

SHA-384 384 192 192

SHA-512 512 256 256

H : {0,1}* ⟶ {0,1}n

3. Hash functions Crypto 101:
Building Blocks © Alfred Menezes

SHA-3 family

✦ The SHA-2 design is similar to SHA-1, and thus there were lingering
concerns that the SHA-1 weaknesses could eventually extend to SHA-2.

✦ SHA-3: NIST hash function competition.

✦ 2008: 64 candidates submitted from around the world.

✦ 2012: Keecak was selected as the winner.

✦ Keecak uses the “sponge construction” and not the Merkle iterated hash
design.

✦ SHA-3 is being used in practice, but is not (yet) as widely deployed as
SHA-2.

152

SHA-256
V3e

HASH FUNCTIONS

CRYPTO 101: Building Blocks
©Alfred Menezes

cryptography101.ca

http://cryptography101.ca

3. Hash functions Crypto 101:
Building Blocks © Alfred Menezes

Description of SHA-256

✦ Iterated hash function (Merkle’s meta method).
✦ ,
✦ Compression function is .
✦ Input: bit string of arbitrary bitlength .
✦ Output: 256-bit hash value of .

n = 256 r = 512.
f : {0,1}256+512 ⟶ {0,1}256

x b ≥ 0
H(x) x

154

IV f

x1

H1
f

x2

H2
f

x3

H3
f

xt+1

H(x)f

xt

Ht
……..

Ht−1

3. Hash functions Crypto 101:
Building Blocks © Alfred Menezes

SHA-256 notation

+ addition modulo

 bitwise complement

 shift right by positions

 rotate right by positions

 bitwise AND of ,

 bitwise exclusive-OR

232

A

A ≫ s A s

A ↪ s A s

AB A B

A ⊕ B

155

f(A, B, C) AB ⊕ AC

g(A, B, C) AB ⊕ AC ⊕ BC

r1(A) (A ↪ 2) ⊕ (A ↪ 13) ⊕ (A ↪ 22)
r2(A) (A ↪ 6) ⊕ (A ↪ 11) ⊕ (A ↪ 25)
r3(A) (A ↪ 7) ⊕ (A ↪ 18) ⊕ (A ≫ 3)
r4(A) (A ↪ 17) ⊕ (A ↪ 19) ⊕ (A ≫ 10)

 are 32-bit wordsA, B, C, D, E, F, G, H

3. Hash functions Crypto 101:
Building Blocks © Alfred Menezes

SHA-256 constants

✦ 32-bit initial chaining values (IVs): These words were obtained by taking
the first 32 bits of the fractional parts of the square roots of the first 8
prime numbers.
 0x6a09e667 0xbb67ae85 0x3c6ef372 0xa54ff53a
 0x510e527f 0x6905688c 0x1f83d9ab 0x5be0cd19

✦ Per-round integer additive constants: These words were obtained by
taking the first 32 bits of the fractional parts of the cube roots of the first 64
prime numbers.
 0x428a2f98 0x71374491 0xb5c0fbcf 0xe9b5dba5
 …………………………………… ………………………………… 0xbef9a3f7 0xc67178f2

h1 = h2 = h3 = h4 =
h5 = h6 = h7 = h8 =

y0 = y1 = y2 = y3 =
y62 = y63 =

156

3. Hash functions Crypto 101:
Building Blocks © Alfred Menezes

SHA-256 preprocessing

1. Pad with 1, followed by as few 0’s as possible so that the bitlength is
64 less than a multiple of 512.

2. Append the 64-bit binary representation of .

3. The formatted input is , where each is a 32-bit word.

4. Initialize the words of the chaining variable:

x

b mod 264

x0, x1, …, x16m−1 xi

(H1, H2, …, H7, H8) ← (h1, h2, …, h7, h8) .

157

3. Hash functions Crypto 101:
Building Blocks © Alfred Menezes

SHA-256 processing
For each from 0 to do the following:

✦ Copy the th block of sixteen 32-bit words into temporary storage:
, .

✦ Expand the 16-word block into a 64-word block:
For from 16 to 63 do:

✦ Initialize working variables: .

✦ For from 0 to 63 do:

✦ .

✦

✦ Update chaining variable: .

Output: SHA-256() = .

i m − 1
i

Xj ← x16i+j 0 ≤ j ≤ 15

j Xj ← r4(Xj−2) + Xj−7 + r3(Xj−15) + Xj−16 .

(A, B, …, G, H) ← (H1, H2, …, H7, H8)
j

T1 ← H + r2(E) + f(E, F, G) + yj + Xj T2 ← r1(A) + g(A, B, C)
H ← G, G ← F, F ← E, E ← D + T1, D ← C, C ← B, B ← A, A ← T1 + T2 .

(H1, H2, …, H7, H8) ← (H1 + A, H2 + B, …, H7 + G, H8 + H)
x H1∥H2∥H3∥H4∥H5∥H6∥H7∥H8

158

3. Hash functions Crypto 101:
Building Blocks © Alfred Menezes

Performance

159

Algorithm block length
(bits)

key length
(bits)

digest length
(bits)

speed
(Mbytes/sec)

ChaCha20 — 256 — 323

Triple-DES 64 168 — 21

AES-128 128 128 — 170

AES-128-NI 128 128 — 2426

AES-256 128 256 — 129

AES-256-NI 128 256 — 1830

MD5 512 — 128 517
SHA-1 512 — 160 331

SHA-256 512 — 256 212
332SHA-512 1024 — 512 332

Speed benchmarks from
2018 on an Intel Xeon CPU
(E3-1220 V2) at 3.10 GHz in
64-bit mode.

Relative speeds will likely be very
different on other processors.

Source: www.bearssl.org/speed.html

†

†

http://www.bearssl.org/speed.html

