3 HASH FUNCTIONS

©Alfred Menezes

cryptography101.ca

http://cryptography101.ca

V3 outline

+ V3a: Fundamental concepts

+ V3b: Relationships between PR, 2PR, CR
+ V3c: Generic attacks

+ V3d: Iterated hash functions

+ V3e: SHA-256

Crypto 101:

3. Hash functions 105 Building Blocks

© Alfred Menezes

Via
Fundamental concepts

HASH FUNCTIONS

CRYPTO 101: Building Blocks

©Alfred Menezes
cryptography101.ca

http://cryptography101.ca

Definitions and terminology

+ Hash functions play a fundamental role in cryptography
+ They are used in a variety of cryptographic primitives and protocols.

+ They are very difficult to design because of stringent security and
performance requirements.

+ The most commonly used hash functions are:
+ SHA-1
+ SHA-2 tamily: SHA-224, SHA-256, SHA-384, SHA-512
+ SHA-3 tamily

Crypto 101:

3. Hash functions 107 Building Blocks

© Alfred Menezes

What is a hash function?®

Hash functions play a
fundamental role in
cryptography. They
are used in a variety

of cryptographic - ———————> H F———*356ab3f0dc300198cb2a
protocols. They are
difficult to design
because of stringent
requirements.

See:
www.xorbin.com / tools / md5-hash-calculator (MD5)
www.xorbin.com /tools /shal-hash-calculator (SHA-1)

www.xorbin.com /tools /sha256-hash-calculator (SHA-256)

- Crypto 101:
3. Hash functions 108 Building Blocks © Alfred Menezes

http://www.xorbin.com/tools/md5-hash-calculator
http://www.xorbin.com/tools/sha1-hash-calculator
http://www.xorbin.com/tools/sha256-hash-calculator

Example: SHA-256

SHA-256: {0,1}* — {0,1}2°°

SHA-256(“Hello there”) =

O0x4e47820698bb4630fb4451010062fadbf85d61427cbdfaed/7ad0£23£239%bed89

SHA-256(“Hello There”) =

Oxabf5dacd019d2229174f1daa%e62852554ablb955febaebbbbb2l4bab6l11f6£f5

Crypto 101:

3. Hash functions 109 Building Blocks

© Alfred Menezes

Definition of a hash function

A hash function is a mapping H such that:

1. H maps binary messages of arbitrary lengths < L to outputs of a fixed length n:
H:{0,1}=L = {0,1}". (Lisusually large, e.g., L = 2°* whereas n is small, e.g. n = 256.)

2. H(x) can be efficiently computed for all x € {0,1}="

'+ His called an n-bit hash function. ~ H(x) is called the hash or message digest of x.

+ Notes:

+ The description of a hash function is public; there are no secret keys.
+ For simplicity, we will usually write {0,1 }* instead of {0,1 V<L

+ More generally, a hash function is an efficiently computable function from a set S to a
set 1.

Crypto 101:

3. Hash functions e Building Blocks

© Alfred Menezes

Toy hash function

r H(x) r H(x) r H(x) r H(x)

0 00 1 01
00 11 01 01 10 01 11 00
000 00| 001 10| 010 11| 011 11
100 11| 101 01| 110 01| 111 10
0000 00 | 0001 11 | 0010 11 | 0011 00
0100 01 | 0101 10 | 0110 10 | 0111 01
1000 11 | 1001 01| 1010 00 | 1011 01
1100 10-| 1101 00| 1110 00 | 1111 11

3. Hash functions

111

H:{0,1}%* — {0,1}?
+ (00,1000) is a collision.
+ 1001 is a preimage of 01.

+ 10 1s a second preimage
of 1011.

Crypto 101:

Building Blocks © Alfred Menezes

Some applications of hash functions

+ Hash functions are used in all kinds of applications, including some that
they were not designed for.

+ One reason for this widespread use of hash functions is speed.

Crypto 101:

3. Hash functions 112 Building Blocks

© Alfred Menezes

Preimage resistance (PR)

Definition: A hash function H : {0,1}* — {0,1}" is preimage resistant if, |
given a hash value y €, {0,1}", it is computationally infeasible to find
(with non-negligible success probability) any x € {0,1}* with H(x) = y.
(x is called a preimage of y.)

Password protection on a multi-user computer system:

+ The server stores [userid, H(password)] in a password file.

+ If an attacker obtains a copy of the password file, she does not learn
any passwords.

+ This application requires preimage resistance.

Crypto 101:

3. Hash functions LS Building Blocks

© Alfred Menezes

2nd preimage resistance (2PR)

Definition: A hash function A : {0,1}* — {0,1}" is 2nd preimage resistant
if, given x €, {0,1}%, it s computationally infeasible to find (with non- W
neghglble SUCCeSS probab111ty) any x' € 10,1 }>X< with x’ # x and H (x) = H(x).

Modlﬁcatlon Detection Codes (MDCS)

+ To ensure that a message m is not modified by unauthorized means,
one computes H(m) and protects H(m) from unauthorized
modification.

+ This is useful in malware protection.

+ This application requires 2nd preimage resistance.

Crypto 101:

3. Hash functions 114 Building Blocks

© Alfred Menezes

Collision resistance (CR)

Definition: A hash function H : {0,1}* — {0,1}" is collision resistant if it is |
computationally infeasible to find (with non-negligible success probability)
x,x' € {0,1}* with x" # x and H(x") = H(x). Such a pair (x, x') is called a collision for H.

| essage dist for digi signture schemes:
+ For reasons of efficiency, instead of signing a (long) message x, the (much shorter)
message digest 7 = H(x) is signed.

+ This application requires preimage-resistance, 2nd preimage resistance, and
collision resistance.

+ To see why collision resistance is required, suppose that the legitimate signer
Alice can find a collision (x;, x,) for H. Alice can sign x, and later claimed to have
signed X,.

Crypto 101:

3. Hash functions 155 Building Blocks

© Alfred Menezes

Some other applications of hash functions

1. Message Authentication Codes: HMAC.

2. Pseudorandom bit generation:
Distilling random bits s = H(xy, x,, ..., Xx,) from several
“pseudorandom” sources xj, x5, ..., X,.

3. Key derivation functions (KDF):
Deriving a cryptographic key from a secret.

4. Proof-of-work in cryptocurrencies (Bitcoin).

5. Quantum-safe signature schemes.

Crypto 101:

3. Hash functions e Building Blocks

© Alfred Menezes

V3b
Relationships between PR, 2PR and CR

HASH FUNCTIONS

CRYPTO 101: Building Blocks

©Alfred Menezes
cryptography101.ca

http://cryptography101.ca

Typical cryptographic requirements

v’ ¥,
L (X
\
e

Definition: A hash function A : {0,1}* — {0,1}" is preimage resistant if, v
given a hash value y €, {0,1}", it is computationally infeasible to find (with |
non-negligible success probability) any x € {0,1 }* with H(x) = y.

Definition: A hash function H : {0,1}* — {0,1}" is 2nd preimage resistant
l if, given x €, {0,1}%, it is computationally infeasible to find (with non-

negligible success probability) any x’ € {0,1}* with x" # x and H(x") = H(x).

l Definition: A hash function H : {0,1}* — {0,1}" is collision resistant if it

is computationally infeasible to find (with non-negligible success
probability) x, x" € {0,1 }* with x" # x and H(x") = H(x).

Crypto 101:

3. Hash functions L Building Blocks

© Alfred Menezes

Breaking PR, 2PR, CR

Breaking PR:
Given: y €, 10,1}". I H : {0,1}>X< —> {O,l}n
Required: x € {0,1 }* with H(x) = y.

Given: x €, {0,1}%*.

Breaking 2PR: l
Required: x" € {0,1}* with x" # x and H(x") = H(x).

Breaking CR:
Given: —. l
Required: x, x" € {0,1}* with x" # x and H(x") = H(x).

Crypto 101:

3. Hash functions 15 Building Blocks

© Alfred Menezes

Claim 1: If H is CR, then H is 2PR

Proof: Suppose that H : {0,1}* — {0,1}" is not 2PR. CIR
We’ll show that H is not CR. \

PR 2PR

Select x €, {0,1}*. Since H is not 2PR, we can efficiently
find x’ € {0,1}%*, x" # x, with H(x") = H(x).
Thus, (x, x’) is a collision for H that we have efficiently found,

showing that H is not CR. []

Note: The proof established the contrapositive statement.

Crypto 101:

3. Hash functions 126 Building Blocks

© Alfred Menezes

Claim 2: CR does not guarantee PR

Proof: Suppose that H : {0,1}* — {0,1}"is CR.
Consider the hash function H : {0,1}* — {0,1}"*! defined by

— | O||H(z), ifxz ¢ {0,1}"
H(z) { 1|z, if z € {0, 1}".

Then H is CR (since H is).
And, H is not PR since preimages can be efficiently found for at least half

of all y € {0,1}""! namely the hash values that begin with 1. []

Note: The hash function H is rather contrived. For somewhat uniform hash

functions, i.e., hash function for which all hash values have roughly the
same number of preimages, CR does indeed guarantee PR.

Crypto 101:

3. Hash functions 121 Building Blocks

© Alfred Menezes

Claim 2*: Suppose H is somewhat uniform. If H is CR, then H is PR.

Proof: Suppose that H : {0,1}* — {0,1}" is not PR. CIR

We’ll show that H is not CR. l \

Select x €5, {0,1}* and compute y = H(x). Since H is not PR, IPIR ZPR

we can efficiently find x" € {0,1 }* with H(x") = y. Since H is
somewhat uniform, we expect that y has many preimages, and
thus x" # x with very high probability. Thus, (x, x’) is a collision for
H that we have efficiently found, so H is not CR. []

Note: For the remainder of the course we’ll assume that hash
functions are somewhat uniform.

Crypto 101:

3. Hash functions 122 Building Blocks

© Alfred Menezes

Claim 3: PR does not guarantee 2PR

CR

Proof: Suppose that H : {0,1}* — {0,1}"is PR. % \

Define H : {0,1}* — {0,1}" by PR*ZPR
H(x,,x,,...,x) = HQO,x,, ...,x,) for all (x;, x,, ...,x) € {0,1}*.

Then H is PR [Why?].

However, H is not 2PR [Why?]. []

Crypto 101:

3. Hash functions 125 Building Blocks

© Alfred Menezes

Claim 4: Suppose H is somewhat uniform. If H is 2PR, then H is PR.

CR

XN\

PREE2PR

Since H is not PR, we can efficiently find x" € {0,1}* with H(x") =y

Proof: Suppose that H : {0,1}* — {0,1}" is not PR.
We'll show that H is not 2PR.

So, suppose we are given x €, 10,1 }*. We compute y = H(x).

Since H is somewhat uniform, we expect that x" # x with very high
probability. Hence, x’ is a second preimage of x that we have

efficiently found.
Thus H is not 2PR. []

Crypto 101:

3. Hash functions 124 Building Blocks

© Alfred Menezes

3. Hash functions 125

Claim 5: 2PR does not guarantee CR

Proof: Suppose that H : {0,1}* — {0,1}" is 2PR. @R
Consider H : {0,1}* — {0,1}" defined by H(x) = H(x) if x # 1, and H(1) = H(0). /

e Then H is not CR, since (0,1) is a collision for H.

PR=ZE2PR

e Suppose now that H : {0,1}* — {0,1}"is not 2PR. We’ll show that H is not 2PR.

So, we are given x €, {0,1}*. Since H is not 2PR, we can efficiently find x’ € {0,1}*, x’ # x, with
H(x'") = H(x). With probability essentially 1, we can assume that x # 0,1. Hence, H(x) = H(x).
Now, if x' # 1, then H(x") = H(x') = H(x) = H(x).

And, if x’ = 1, then H(x") = H(1) = H(0) = H(x).

In either case, we have efficiently found a second preimage for x w.r.t. H .

Hence, H is not 2PR, a contradiction. Thus, H is 2PR.

Crypto 101:

Building Blocks © Alfred Menezes

Relationships between PR, 2PR, CR

Let H: {0,1}* — {0,1}" be a hash function.

CR
s

3
/ > % for somewhat uniform
< * hash functions
4
3. Hash functions 126 Crypto 101: © Alfred Menezes

Building Blocks

V3c¢
Generic attacks

HASH FUNCTIONS

CRYPTO 101: Building Blocks

©Alfred Menezes
cryptography101.ca

http://cryptography101.ca

Generic attacks

A generic attack on hash functions H : {0,1}* — {0,1}" does not exploit
any properties that the specific hash function might have.

+ In the analysis of a generic attack, we view H as a random function in
the sense that for each x € {0,1}%*, the hash value y = H(x) was defined
by selecting y €, {0,1}".

+ From a security point of view, a random function is an ideal hash
function. However, random functions are not suitable for practical
applications because they cannot be compactly described.

Crypto 101:

3. Hash functions 12 Building Blocks

© Alfred Menezes

Generic attack for finding preimages

+ Attack: Given y €, {0,1}", repeatedly select arbitrary x € {0,1}* until
H(x) = y.

+ Analysis: The expected number of hash operations is 2”.

+ This generic attack is infeasible if n > 128.

+ Note: It has been proven that this generic attack for finding preimages is
optimal, i.e., no faster generic attack exists. Of course, for a specific hash
function, there might exist a faster preimage finding algorithm.

' Crypto 101:
3. Hash functions 129 Building Blocks © Alfred Menezes

3. Hash functions

+ Attack: Select arbitrary x € {0, }* and store (H(x),x) in a
table sorted by first entry. Repeat until a collision is found.

Generic attack for finding collisions

+ Analysis: By the birthday paradox, the expected number
of hash operations is \/72"/2 ~

2",

+ This generic attack is infeasible if n > 256.

+ Note: It has been proven that this generic attack for finding collisions is optimal, i.e.,
no faster generic attack exists.

+ Expected space required: \/72"/2 ~ 1/2".

+ Example: If n = 128, the expected running time is 204 (feasible), whereas the
expected space required is 5 X 10° Tbytes (infeasible).

130

Crypto 101:

Building Blocks © Alfred Menezes

VW parallel collision search

+ VW: van Oorschot & Wiener (1993)

+ Expected number of hash operations: =~ 4/2".

+ Expected space required: negligible.

+ Easy to parallelize — m-fold speedup with m processors.

+ The VW collision-finding algorithm can easily be modified to find
“meaningful” collisions. (See Optional Readings at cryptography101.ca.)

+ Conclusion: If collision resistance is desired, then use an n-bit hash
function with n > 256.

Crypto 101:

3. Hash functions 131 Building Blocks

© Alfred Menezes

Parallel collision search (VW method)

+ Problem: Find a collision for H# : {0,1}* — {0,1}".
+ Assumption: / is a random function.

+ Notation: Let N = 2".
Define a sequence {x;};5o by Xy €z 10,1}", x; = H(x;_) fori > 1.

Let j be the smallest index for which x; = x; for some i < j; such aj

must exist. Then x;, , = x;, , forall £ 21 1. By the birthday pilradox,
E[j] ~\/aN/2 ~\/N.1In fact, E[i] ~ Eﬁv and E[j — i] 5\/N.

+ Now, i # 0 with overwhelming probability, in which event
(X;_15X;_1) 1s a collision for H.

+ Question: How to find (x;_, x;_;) without using much storage?

3. Hash functions 132

Crypto 101:
Building Blocks

© Alfred Menezes

Distinguished points

+ Answer: Only store distinguished points.

+ Distinguished points: Select an easily-testable
distinguishing property for elements of {0,1}",
e.g. leading 32 bits are all 0.

Let @ be the proportion of elements of {0,1}" that
are distinguished.

+ VW method: Compute the sequence xy, X, X5, X3, ...
and only store the points that are distinguished.

3. Hash functions 133

Crypto 101:
Building Blocks

© Alfred Menezes

VW collision finding

collision
has
occurred
collision
1S
detected
xa+2
xa+1
® distinguished X,
INnt
X, points

Crypto 101:
Building Blocks

3. Hash functions © Alfred Menezes

VW collision finding

e

Stage 1: Detecting a collision

i Select xy €4 {0,1)" Stage 2: Finding a collision

2. Store (x3,0,—) in a sorted table. 1.5et) <~ b—a, ¢,«d-c.
3.LP « x,. (LP=last point stored) 2. Suppose | > ¢, and set
4. Ford = 1,2,3,... do:
a. Compute x;, = H(x,;_ ;). X, @ X, 3. Compute X, 1, X9, s X 0t -
10 4. Form = 1,2,3,... do:

b. If x, is distinguished then

.. If x, is already in the table, say x, = x,, a) Compute (X, 44 Xeym):

where b < d, then go to Stage 2. 5. Untilx,, . =X,
' a m c+m’
. : X
ii. Store (x,, d, LP) in the table. a+k: Xe 6. The collision is (X, ., {» Xor, ;).
iii. LP « x,. Xat2 @ L 1 N
xa

- Crypto 101:
3. Hash functions 135 Building Blocks © Alfred Menezes

VW analysis

+ Stage 1: Expected number of H-evaluations is: l

\/nN/2+% ~ \ﬁv+%.

3
- (see optional readings).

+ otage 2: Expected number of H-evaluationsis <

o 4
+ Overall expected running time: \/N + s

+ Expected storage R BnH\/N bits (each table entry has b1tlength 3n)

+ Example Consider n = 128. Take 60 = 1/ 232 Then the expected run time
of VW collision search is 2°* H-evaluations (feasible), and the expected
storage is 192 Gbytes (negligible).

Crypto 101:

3. Hash functions 156 Building Blocks

© Alfred Menezes

Parallelizing VW collision search

+ Run independent copies of VW on each of m processors

+ Report distinguished points to a central server.

4
[4

1 2 m
Analysis Notes
1 4 1. Factor-m speedup.
+ Expected time ~ —\/N + —.
m 0 2. No communications between processors.
+ Expected storage ~ 3n64/N bits.| |3. Occasional communications with the central server.

Crypto 101:

3. Hash functions 137 Building Blocks

© Alfred Menezes

v3d
Iterated hash functions

HASH FUNCTIONS

CRYPTO 101: Building Blocks

©Alfred Menezes
cryptography101.ca

http://cryptography101.ca

lterated hash functions (Merkle’s meta method)

Ay Ar1

Iv_yf_,f_,f_, _,foHH(x)

:Components:

+ Fixed initializing
value IV € {0,1}".
+ Efficiently-

computable
compression function:

{01} = {0,1}".:

3. Hash functions

To compute H(x) where x has bitlength b < 2" do:

1. Break up x into r-bit blocks, X = x{, x,, ..., x,
padding the last block with 0 bits as necessary.

2. Define x, , the length-block, to hold the
right-justified binary representation of b.

3. Define Hy =1V.

4. Compute H; = f(H,_,x) fori = 1,2,..., 1+ 1.
(The Hs are called chaining variables.)

5. Define H(x) = H,_ ;.

Crypto 101:
Building Blocks

139 © Alfred Menezes

Collision resistance of iterated hash functions

Xy X X3 At A1

s L s

V—s f — J —] — —»foHH(x)

Theorem (Merkle): If the compression function f'is collision resistant, then

the iterated hash function H is also collision resistant.

Merkle’s theorem reduces the problem of designing collision-resistant hash
functions to that of designing collision-resistant compression functions.

Crypto 101:

3. Hash functions 2t Building Blocks

© Alfred Menezes

Provable security

+ The assumptions might be

A major theme in cryptographic research o ,
. . . o unrealistic, or false, or circular.
is to formulate precise security definitions
and assumptions, and then prove that a + The security proof might be
cryptographic protocol is secure. fallacious.
A proof of security is certainly desirable + The security model might not
since it rules out the possibility of attacks account for certain kinds of realistic
being discovered in the future. attacks.
However, it isn’t always easy to assess the + The security proof might be
practical security assurances (if any) that asymptotic.
a security proof provides.
7 PIOOLP + The security proof might have a
Optional reading: anotherlook.ca large tightness gap.
3. Hash functions 141 Crypto 101: © Alfred Menezes

Building Blocks

http://anotherlook.ca

+ Suppose that H is not CR. We'll show that fis not CR.

+ Since H is not CR, we can efficiently find messages x, x" € {0,1}*, with
x #x and H(x) = H(xX').

+ Let X =Xxy,x5,...,%x,, b =bitlength(x), x,.;= length block.

+ Let X' = x{,x5,...,x,, b’ =Dbitlength(x’), x/ , = length block.

Crypto 101:

3. Hash functions 142 Building Blocks

© Alfred Menezes

Proof of Merkle’s Theorem (2)

+ We etficiently compute:

Hi
H

Hyyq

1V

f(H()):El)
f(H17 :EZ)

f(Ht—27 xt—l)
f(Ht—la fl?t)
f(Ht7 xt-i—l)

H(x")

f(2’ 275515’

f(2’ laxt’

f(t! mt’+1)

1)
)

+ Since H(x) = H(x), wehave H, , = H} .

3. Hash functions

143

Crypto 101:
Building Blocks

© Alfred Menezes

Proof of Merkle’s Theorem (3)

+ Case 1: Now, it b # b',then x,, | # x,,,. Thus, (H,, x,,,), (H/,x/,,)isa

collision for f that we have efficiently found.

/

+ Case 2: Suppose next that b = b’. Thent =t'and x,. | = x;_

+ Let i be the largest index, 0 < i < ¢, for which (H;, x;,,) # (H.,x/,).

l
Such an i must exist since x # x'.

+ Then Hi+1 =f(Hi’ xi+1) =f(Hi,’ xi, 1) — Hi,+1’ SO (Hi’ xi+1)’ (Hi,’ xi, 1) 1s a
collision for f that we have efficiently found.

+ Thus, fis not collision resistant. [_]

Crypto 101:

3. Hash functions 144 Building Blocks

© Alfred Menezes

MDx-tamily of hash functions

+ MDx is a family of iterated hash functions.
+ MD4 was proposed by Ron Rivest in 1990.
+ MD4 has 128-bit outputs.

Professor Xiaoyun Wang et al. (2004)
found collisions for MD4 by hand.

+ Leurent (2008) discovered an algorithm for finding
MD4 preimages in 2!%* operations.

Crypto 101:

3. Hash functions 3 Building Blocks

© Alfred Menezes

MD5 hash function

+ MD?5 is a strengthened version of MDA4.
+ Designed by Ron Rivest in 1991.

+ MD?5 has 128-bit outputs. _ /
+ Wang and Yu (2004) found MD5 collisions in 237 operations.

+ MDS5 collisions can now be found in 2°* operations, which takes a few
seconds on a laptop computer.

+ Sasaki & Aoki (2009) discovered a method for finding MD5 preimages in
21234 steps.

Crypto 101:

3. Hash functions lhese Building Blocks

© Alfred Menezes

MD5 hash function (2)

Summary: MD5 should not be used if collision resistance is required, but is
probably okay as a preimage-resistant hash function.

+ MD?5 is still used today.

+ 2006: MD5 was implemented more than 850 times in Microsoft Windows
source code.

+ 2014: Microsoft issues a patch that restricts the use of MD5 in certificates
in Windows: tinyurl.com / MicrosoftMD?5.

Crypto 101:

3. Hash functions 147 Building Blocks

© Alfred Menezes

http://tinyurl.com/MicrosoftMD5

Flame malware

+ Discovered in 2012, Flame malware was a highly
sophisticated espionage tool.

+ Targeted computers in Iran and the Middle East.

“# 4 WIKIPEDIA
R "/ The Free Encyclopedia

+ Contains a forged Microsoft certificate for Windows
code signing.

Flame (malware)

+ Forged certificate used a new “zero-day MD5
chosen-prefix” collision attack.

+ Microsoft no longer allows the use of MD5 for code
signing.

Crypto 101:

3. Hash functions = Building Blocks

© Alfred Menezes

SHA-1

+ Secure Hash Algorithm (SHA) was designed by NSA and published by NIST in 1993
(FIPS 180).

+ 160-bit iterated hash function, based on MD4.
+ Slightly modified to SHA-1 (FIPS 180-1) in 1994 in order to fix an

undisclosed security weakness.
+ Wang et al. (2005) found collisions for SHA in 237 operations.

+ Wang et al. (2005) discovered a collision-finding algorithm for
SHA-1 that takes 2% operations.

+ The first SHA-1 collision was found on February 23, 2017.

+ No preimage or 2nd preimage attacks that are faster than the generic attacks are
known for SHA-I.

Crypto 101:

3. Hash functions = Building Blocks

© Alfred Menezes

SHA-2 tamily

+ In 2001, NSA proposed variable output-length versions of SHA-1.

+ Qutput lengths are 224 bits (SHA-224 and SHA-512/224), 256 bit
(SHA-256 and SHA-512/256), 384 bits (SHA-384), and 512 bits
(SHA-512).

+ 2024: No weaknesses in any of these hash functions have been found.

+ Note: The security levels of these hash functions against VW collision

finding attacks are the same as the security levels of Triple-DES,
AES-128, AES-192, and AES-256 against exhaustive key search attacks.

+ The SHA-2 hash functions are standardized in FIPS 180-2.

Crypto 101:

3. Hash functions 150 Building Blocks

© Alfred Menezes

Summary: Collision resistance of iterated hash functions

Hash function

H: {0,1}* — {0,1}"

MD4 (1990)

MD?5 (1991)

SHA (1993)
SHA-1 (1994)

3. Hash functions

SHA-224

SHA-256
SHA-384
SHA-512

128
128
160
160
224
256
384
512

Security level

against generic
attack VW attack

151

(in bits)
64

64
80
80
112
128
192
256

Security level after
Prof. Wang’s attacks
(in bits)

4 (2004)
39 (2005) —> 24
39 (2005)
63 (2005)
112
128
192
256

Crypto 101:
Building Blocks

© Alfred Menezes

SHA-3 tamily

+ The SHA-2 design is similar to SHA-1, and thus there were lingering
concerns that the SHA-1 weaknesses could eventually extend to SHA-2.

+ SHA-3: NIST hash function competition.
+ 2008: 64 candidates submitted from around the world.
+ 2012: Keecak was selected as the winner.

+ Keecak uses the “sponge construction” and not the Merkle iterated hash

design.
+ SHA-3 is being used in practice, but is not (yet) as widely deployed as
SHA-2.
3. Hash functions 152 Crypto 101: © Alfred Menezes

Building Blocks

Vie
SHA-256

HASH FUNCTIONS

CRYPTO 101: Building Blocks

©Alfred Menezes
cryptography101.ca

http://cryptography101.ca

Description of SHA-256

+1
I IR I B B
IV—»}?}?}? H_r}T}HH(X)
I 2 3 — f
+ Iterated hash function (Merkle’s meta method).

+ n=256,r=>512.

+ Compression functionis f: {0,1 12564512 5 () 11296

+ Input: bit string x of arbitrary bitlength b > O.
+ Qutput: 256-bit hash value H(x) of x.

Crypto 101:

3. Hash functions 154 Building Blocks

© Alfred Menezes

SHA-256 notation

A B,C,D,E,F, G, H are 32-bit words

+ addition modulo 272

A bitwise complement

A > s shift A right by s positions
A S s rotate A right by s positions
AB bitwise AND of A, B

A @ B bitwise exclusive-OR

3. Hash functions

fA,B,C) AB@AC

9(A,B,C) AB®AC® BC

ri(A)
ry(A)
r3(A)
ry(A)

155

AS2D) DA 13)P (A 22)
ASH6H)PA1]) P A< 25
ASTHHAS 18 b (A>3)

AS1TYDAS 19D A>10)

Crypto 101:

Building Blocks © Alfred Menezes

SHA-256 constants

+ 32-bit initial chaining values (IVs): These words were obtained by taking
the first 32 bits of the fractional parts of the square roots of the first 8

prime numbers.
hy = 0x6a09e667 h, = 0xbb67ae85 hy=0x3c6ef372 h,;=0xab4ff53a
hs = 0x510e527f h; = 0x6905688c hy =0x1£83d9%ab hg = 0x5belcdl?

+ Per-round integer additive constants: These words were obtained by
taking the first 32 bits of the fractional parts of the cube roots of the first 64

prime numbers.

Vo = 0x428a2f98 y, = 0x71374491 y, = 0xb5c0fbcf y; = 0xe9b5dbas
... Ve, = 0xbef9a3f7 yoi; = 0xc67178E2

Crypto 101:

3. Hash functions 156 Building Blocks

© Alfred Menezes

SHA-256 preprocessing

1. Pad x with 1, followed by as few 0’s as possible so that the bitlength is
64 less than a multiple of 512.

2. Append the 64-bit binary representation of » mod 2°*
3. The formatted input is xy, x{, ..., X¢,,_1, Where each x; is a 32-bit word.

4. Initialize the words of the chaining variable:
(H,H,, ...,H,,Hy) < (h{, h,, ..., h,, hy).

Crypto 101:

Building Blocks © Alfred Menezes

3. Hash functions 157

SHA-256 processing

For each i from 0 to m — 1 do the following:

+ Copy the ith block of sixteen 32-bit words into temporary storage:

+ Expand the 16-word block into a 64-word block:

FOI'j from 16 to 63 do:)(] <« 1”4(Xj_2) +)(j—7 + 7‘3(Xj_15) —+)(j—16 .

+ Initialize working variables: (A, B, ...,G,H) <« (H, H,, ..., H,, Hy).

+ For j from 0 to 63 do:
+ T' <« H+ry(E)+ E,F,G)+y + X,

T, — r(A) + g(A, B, C).

+H<G, G«F, F<E, E<~D+T,, D C, C<B, B—A A<T +1,.

+ Update chaining variable: (H,, H,, ...,H;,Hy) <« (H, + A, H,+ B, ..., H, + G, Hy + H).

Output: SHA-256(x) = H, || H, || Hs || H || Hs || He || H- || Hs.

3. Hash functions 158

Crypto 101:
Building Blocks

© Alfred Menezes

Performance

block length key length digest length speed
(bits) (bits) (bits) (Mbytes/ sec)

ChaCha20 — 256 — 323

Algorithm

Speed benchmarks' from Triple-DES 64 168 — 21
2018 on an Intel Xeon CPU AES-128 128 128 — 170
(E3-1220 V2) at 3.10 GHz in PNZREIENE 128 128 _ 2426
64-bit mode. AES-256 128 256 — 129
?Relative speeds will likely be very AES5-256-NI 128 256 — 1830
different on other processors. 512 - 128 517
Source: www.bearssl.org / speed.html 012 — 160 331
512 - 256 212

SHA-512 1024 — 512 332

3. Hash functions 159 Crypto 101: © Alfred Menezes

Building Blocks

http://www.bearssl.org/speed.html

