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Definitions and terminology

✦ Hash functions play a fundamental role in cryptography

✦ They are used in a variety of cryptographic primitives and protocols.

✦ They are very difficult to design because of stringent security and 
performance requirements.

✦ The most commonly used hash functions are:

✦ SHA-1

✦ SHA-2 family: SHA-224, SHA-256, SHA-384, SHA-512

✦ SHA-3 family
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What is a hash function?

See: 
www.xorbin.com/tools/md5-hash-calculator (MD5) 
www.xorbin.com/tools/sha1-hash-calculator (SHA-1) 
www.xorbin.com/tools/sha256-hash-calculator (SHA-256)
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H 356ab3f0dc300198cb2a

Hash functions play a 
fundamental role in 
cryptography. They 
are used in a variety 

of cryptographic 
protocols. They are 
difficult to design 

because of stringent 
requirements.

http://www.xorbin.com/tools/md5-hash-calculator
http://www.xorbin.com/tools/sha1-hash-calculator
http://www.xorbin.com/tools/sha256-hash-calculator
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Example: SHA-256

SHA-256 : {0,1}* ⟶ {0,1}256

109
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Definition of a hash function

A hash function is a mapping  such that:

1.  maps binary messages of arbitrary lengths  to outputs of a fixed length :   
.    (  is usually large, e.g., , whereas  is small, e.g. .)

2.  can be efficiently computed for all .

H

H ≤ L n
H : {0,1}≤L → {0,1}n L L = 264 n n = 256
H(x) x ∈ {0,1}≤L

110

✦  is called an -bit hash function.       is called the hash or message digest of .

✦ Notes: 

✦ The description of a hash function is public; there are no secret keys.

✦ For simplicity, we will usually write  instead of .

✦ More generally, a hash function is an efficiently computable function from a set  to a 
set .

H n H(x) x

{0,1}* {0,1}≤L

S
T
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Toy hash function

✦ (00,1000) is a collision.

✦ 1001 is a preimage of 01.

✦ 10 is a second preimage 
of 1011.

H : {0,1}≤4 ⟶ {0,1}2
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Some applications of hash functions

✦ Hash functions are used in all kinds of applications, including some that 
they were not designed for.

✦ One reason for this widespread use of hash functions is speed.
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Preimage resistance (PR)

Definition: A hash function  is preimage resistant if, 
given a hash value , it is computationally infeasible to find 
(with non-negligible success probability) any  with . 
(  is called a preimage of .)

H : {0,1}* ⟶ {0,1}n

y ∈R {0,1}n

x ∈ {0,1}* H(x) = y
x y

113

Password protection on a multi-user computer system:

✦ The server stores [userid, (password)] in a password file. 
✦ If an attacker obtains a copy of the password file, she does not learn 

any passwords.
✦ This application requires preimage resistance.

H
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2nd preimage resistance (2PR)

Modification Detection Codes (MDCs):

✦ To ensure that a message  is not modified by unauthorized means, 
one computes  and protects  from unauthorized 
modification.

✦ This is useful in malware protection.

✦ This application requires 2nd preimage resistance.

m
H(m) H(m)
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Definition: A hash function  is 2nd preimage resistant 
if, given , it is computationally infeasible to find (with non-
negligible success probability) any  with  and .

H : {0,1}* ⟶ {0,1}n

x ∈R {0,1}*
x′ ∈ {0,1}* x′ ≠ x H(x′ ) = H(x)
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Collision resistance (CR)

Message digests for digital signature schemes:

✦ For reasons of efficiency, instead of signing a (long) message , the (much shorter) 
message digest  is signed.

✦ This application requires preimage-resistance, 2nd preimage resistance, and 
collision resistance.

✦ To see why collision resistance is required, suppose that the legitimate signer 
Alice can find a collision  for . Alice can sign  and later claimed to have 
signed .

x
h = H(x)

(x1, x2) H x1
x2
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Definition: A hash function  is collision resistant if it is 
computationally infeasible to find (with non-negligible success probability) 

 with  and . Such a pair  is called a collision for .

H : {0,1}* ⟶ {0,1}n

x, x′ ∈ {0,1}* x′ ≠ x H(x′ ) = H(x) (x, x′ ) H



3. Hash functions Crypto 101:  
Building Blocks © Alfred Menezes

Some other applications of hash functions

1. Message Authentication Codes: HMAC.

2. Pseudorandom bit generation:  
Distilling random bits  from several 
“pseudorandom” sources .

3. Key derivation functions (KDF):  
Deriving a cryptographic key from a secret.

4. Proof-of-work in cryptocurrencies (Bitcoin).

5. Quantum-safe signature schemes.

s = H(x1, x2, …, xt)
x1, x2, …, xt
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Typical cryptographic requirements

118

Definition: A hash function  is preimage resistant if, 
given a hash value , it is computationally infeasible to find (with 
non-negligible success probability) any  with .

H : {0,1}* ⟶ {0,1}n

y ∈R {0,1}n

x ∈ {0,1}* H(x) = y

Definition: A hash function  is 2nd preimage resistant 
if, given , it is computationally infeasible to find (with non-
negligible success probability) any  with  and .

H : {0,1}* ⟶ {0,1}n

x ∈R {0,1}*
x′ ∈ {0,1}* x′ ≠ x H(x′ ) = H(x)

Definition: A hash function  is collision resistant if it 
is computationally infeasible to find (with non-negligible success 
probability)  with  and .

H : {0,1}* ⟶ {0,1}n

x, x′ ∈ {0,1}* x′ ≠ x H(x′ ) = H(x)
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Breaking PR, 2PR, CR
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Breaking PR: 
Given:  . 
Required:  with .

y ∈R {0,1}n

x ∈ {0,1}* H(x) = y

Breaking 2PR: 
Given:  . 
Required:  with  and .

x ∈R {0,1}*
x′ ∈ {0,1}* x′ ≠ x H(x′ ) = H(x)

Breaking CR: 
Given:  . 
Required:  with  and .

−
x, x′ ∈ {0,1}* x′ ≠ x H(x′ ) = H(x)

H : {0,1}* ⟶ {0,1}n
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Claim 1: If  is CR, then  is 2PRH H

Proof: Suppose that  is not 2PR.  

We’ll show that  is not CR. 

Select . Since  is not 2PR, we can efficiently  

find , , with . 

Thus,  is a collision for  that we have efficiently found,  

showing that  is not CR.   

Note: The proof established the contrapositive statement.

H : {0,1}* ⟶ {0,1}n

H
x ∈R {0,1}* H

x′ ∈ {0,1}* x′ ≠ x H(x′ ) = H(x)
(x, x′ ) H

H □
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CR

PR 2PR
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Claim 2: CR does not guarantee PR
Proof: Suppose that  is CR.  

Consider the hash function  defined by 

Then  is CR (since  is). 

And,  is not PR since preimages can be efficiently found for at least half 

of all , namely the hash values that begin with 1.   

H : {0,1}* ⟶ {0,1}n

H : {0,1}* ⟶ {0,1}n+1

H H
H
y ∈ {0,1}n+1 □

121

Note: The hash function  is rather contrived. For somewhat uniform hash 
functions, i.e., hash function for which all hash values have roughly the 
same number of preimages, CR does indeed guarantee PR.

H
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Claim 2*: Suppose  is somewhat uniform. If  is CR, then  is PR.H H H

Proof: Suppose that  is not PR.  

We’ll show that  is not CR.  

Select  and compute . Since  is not PR,  

we can efficiently find  with . Since  is 

somewhat uniform, we expect that  has many preimages, and 

thus  with very high probability. Thus,  is a collision for 

 that we have efficiently found, so  is not CR.    

H : {0,1}* ⟶ {0,1}n

H
x ∈R {0,1}* y = H(x) H

x′ ∈ {0,1}* H(x′ ) = y H
y

x′ ≠ x (x, x′ )
H H □
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CR

PR 2PR

Note: For the remainder of the course we’ll assume that hash 
functions are somewhat uniform.
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Claim 3: PR does not guarantee 2PR 

Proof: Suppose that  is PR. 

Define  by  

 for all . 

Then  is PR [Why?]. 

However,  is not 2PR [Why?].    

H : {0,1}* ⟶ {0,1}n

H : {0,1}* ⟶ {0,1}n

H(x1, x2, …, xt) = H(0, x2, …, xt) (x1, x2, …, xt) ∈ {0,1}*
H

H □
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PR 2PR
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Proof: Suppose that  is not PR. 

We’ll show that  is not 2PR. 

So, suppose we are given . We compute .  

Since  is not PR, we can efficiently find  with . 

Since  is somewhat uniform, we expect that  with very high 

probability. Hence,  is a second preimage of  that we have 

efficiently found. 

Thus  is not 2PR.   

H : {0,1}* ⟶ {0,1}n

H
x ∈R {0,1}* y = H(x)

H x′ ∈ {0,1}* H(x′ ) = y
H x′ ≠ x

x′ x

H □
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Claim 4: Suppose  is somewhat uniform. If  is 2PR, then  is PR.H H H

CR

PR 2PR
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Proof: Suppose that  is 2PR.  

Consider   defined by  if , and . 

 Then  is not CR, since  is a collision for .

H : {0,1}* ⟶ {0,1}n

H : {0,1}* ⟶ {0,1}n H(x) = H(x) x ≠ 1 H(1) = H(0)
∙ H (0,1) H
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Claim 5: 2PR does not guarantee CR
CR

PR 2PR
 Suppose now that  is not 2PR. We’ll show that  is not 2PR.  

So, we are given . Since  is not 2PR, we can efficiently find , , with 

. With probability essentially 1, we can assume that . Hence, . 

Now, if , then . 

And, if , then .  

In either case, we have efficiently found a second preimage for  w.r.t.  

Hence,  is not 2PR, a contradiction. Thus,  is 2PR.    

∙ H : {0,1}* ⟶ {0,1}n H
x ∈R {0,1}* H x′ ∈ {0,1}* x′ ≠ x

H(x′ ) = H(x) x ≠ 0,1 H(x) = H(x)
x′ ≠ 1 H(x′ ) = H(x′ ) = H(x) = H(x)
x′ = 1 H(x′ ) = H(1) = H(0) = H(x)

x H .
H H □
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Relationships between PR, 2PR, CR

Let  be a hash function.H : {0,1}* ⟶ {0,1}n

126

CR

PR 2PR for somewhat uniform 
 hash functions

12*

3

4
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Generic attacks

A generic attack on hash functions  does not exploit 
any properties that the specific hash function might have.

H : {0,1}* ⟶ {0,1}n

128

✦ In the analysis of a generic attack, we view  as a random function in 
the sense that for each , the hash value  was defined 
by selecting .

✦ From a security point of view, a random function is an ideal hash 
function. However, random functions are not suitable for practical 
applications because they cannot be compactly described.

H
x ∈ {0,1}* y = H(x)

y ∈R {0,1}n
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Generic attack for finding preimages

✦ Attack: Given , repeatedly select arbitrary  until 
.

✦ Analysis: The expected number of hash operations is .

y ∈R {0,1}n x ∈ {0,1}*
H(x) = y

2n

129

✦ This generic attack is infeasible if .

✦ Note: It has been proven that this generic attack for finding preimages is 
optimal, i.e., no faster generic attack exists. Of course, for a specific hash 
function, there might exist a faster preimage finding algorithm.

n ≥ 128
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Generic attack for finding collisions

✦ Attack: Select arbitrary  and store  in a 
table sorted by first entry. Repeat until a collision is found.

✦ Analysis: By the birthday paradox, the expected number 
of hash operations is .

x ∈ {0,1}* (H(x), x)

π2n/2 ≈ 2n

130

✦ This generic attack is infeasible if .

✦ Note: It has been proven that this generic attack for finding collisions is optimal, i.e., 
no faster generic attack exists.

✦ Expected space required: .

✦ Example: If , the expected running time is  (feasible), whereas the 
expected space required is  Tbytes (infeasible).

n ≥ 256

π2n/2 ≈ 2n

n = 128 264

5 × 108
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VW parallel collision search

✦ VW: van Oorschot & Wiener (1993)

✦ Expected number of hash operations: .

✦ Expected space required: negligible.

✦ Easy to parallelize — -fold speedup with  processors.

✦ The VW collision-finding algorithm can easily be modified to find 
“meaningful” collisions. (See Optional Readings at cryptography101.ca.)

✦ Conclusion: If collision resistance is desired, then use an -bit hash 
function with .

≈ 2n

m m

n
n ≥ 256

131
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Parallel collision search (VW method)

✦ Problem: Find a collision for .

✦ Assumption:  is a random function.

✦ Notation: Let .  
Define a sequence  by ,  for . 

Let  be the smallest index for which  for some ; such a  
must exist. Then  for all . By the birthday paradox, 

. In fact,  and .

✦ Now,  with overwhelming probability, in which event 
 is a collision for .

✦ Question: How to find  without using much storage?

H : {0,1}* ⟶ {0,1}n

H

N = 2n

{xi}i≥0 x0 ∈R {0,1}n xi = H(xi−1) i ≥ 1
j xj = xi i < j j

xj+ℓ = xi+ℓ ℓ ≥ 1
E[ j] ≈ πN/2 ≈ N E[i] ≈ 1

2 N E[ j − i] ≈ 1
2 N

i ≠ 0
(xi−1, xj−1) H

(xi−1, xj−1)

132

x0

x1

x2

x3

x4

x5

xi−2

xi−1

xi

xi+2
xj−1

xi+1
xj

tail

cycle
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Distinguished points

✦ Answer: Only store distinguished points.

✦ Distinguished points: Select an easily-testable 
distinguishing property for elements of , 
e.g. leading 32 bits are all 0.  
Let  be the proportion of elements of  that 
are distinguished.

✦ VW method: Compute the sequence  
and only store the points that are distinguished.

{0,1}n

θ {0,1}n

x0, x1, x2, x3, …

133

x0

x1

x2

x3

x4

x5

xi−2

xi−1

xi

xi+2
xj−1

xi+1
xj

tail

cycle
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VW collision finding

x0

xa

xb

xc

xd

distinguished
points

collision
has

occurred

collision
is

detected

xa

xb xd

xc

xa+1
xa+2

xa+k
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VW collision finding

Stage 1: Detecting a collision

1. Select .

2. Store  in a sorted table.

3. .     (LP= last point stored)

4. For  do:

a. Compute 

b. If  is distinguished then

i. If  is already in the table, say  
where , then go to Stage 2.

ii. Store  in the table.

iii. .

x0 ∈R {0,1}n

(x0,0,−)
LP ← x0

d = 1,2,3,…
xd = H(xd−1) .

xd

xd xd = xb
b < d

(xd, d, LP)
LP ← xd

135

Stage 2: Finding a collision

1. Set ,    .

2. Suppose , and set 
.

3. Compute 

4. For  do:

a) Compute .

5. Until .

6. The collision is .

ℓ1 ← b − a ℓ2 ← d − c

ℓ1 ≥ ℓ2
k ← ℓ1 − ℓ2

xa+1, xa+2, …, xa+k .
m = 1,2,3,…

(xa+k+m, xc+m)
xa+k+m = xc+m

(xa+k+m−1, xc+m−1)

xa

xb xd

xc

xa+1
xa+2

xa+k

x0

xa

xb

xc

xd
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VW analysis

✦ Stage 1: Expected number of -evaluations is: 

                                          .

✦ Stage 2: Expected number of -evaluations is  (see optional readings).

✦ Overall expected running time: 

✦ Expected storage:  bits (each table entry has bitlength ).

H
πN/2 + 1

θ
≈ N + 1

θ

H ≤ 3
θ

N + 4
θ

.

≈ 3nθ N 3n

136

✦ Example: Consider . Take . Then the expected run time 
of VW collision search is  -evaluations (feasible), and the expected 
storage is 192 Gbytes (negligible).

n = 128 θ = 1/232

264 H
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Parallelizing VW collision search
✦ Run independent copies of VW on each of  processors
✦ Report distinguished points to a central server.

m

137

Analysis

✦ Expected time .

✦ Expected storage  bits.

≈ 1
m

N + 4
θ

≈ 3nθ N

 Notes

1. Factor-  speedup.

2. No communications between processors.

3. Occasional communications with the central server.

m

. . . . . .
1 2 m3 4
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Iterated hash functions (Merkle’s meta method)

Components:

✦ Fixed initializing 
value .

✦ Efficiently-
computable 
compression function 

.

IV ∈ {0,1}n

f : {0,1}n+r → {0,1}n

139

To compute  where  has bitlength  do:

1. Break up  into -bit blocks, ,  
padding the last block with 0 bits as necessary.

2. Define , the length-block, to hold the  
right-justified binary representation of .

3. Define .

4. Compute  for .  
(The  are called chaining variables.)

5. Define .

H(x) x b < 2r

x r x = x1, x2, …, xt

xt+1
b

H0 = IV
Hi = f(Hi−1, xi) i = 1,2,…, t + 1

H′ is
H(x) = Ht+1

IV f

x1

H1
f

x2

H2
f

x3

H3
f

xt+1

H(x)f

xt

Ht

……
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Collision resistance of iterated hash functions

Theorem (Merkle): If the compression function  is collision resistant, then 
the iterated hash function  is also collision resistant.

f
H

140

Merkle’s theorem reduces the problem of designing collision-resistant hash 
functions to that of designing collision-resistant compression functions.

IV f

x1

H1
f

x2

H2
f

x3

H3
f

xt+1

H(x)

xt

f
Ht

……..
Ht−1
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Provable security

A major theme in cryptographic research 
is to formulate precise security definitions 
and assumptions, and then prove that a 
cryptographic protocol is secure.

A proof of security is certainly desirable 
since it rules out the possibility of attacks 
being discovered in the future.

However, it isn’t always easy to assess the 
practical security assurances (if any) that 
a security proof provides.

Optional reading: anotherlook.ca

141

✦ The assumptions might be 
unrealistic, or false, or circular.

✦ The security proof might be 
fallacious.

✦ The security model might not 
account for certain kinds of realistic 
attacks.

✦ The security proof might be 
asymptotic.

✦ The security proof might have a 
large tightness gap.

http://anotherlook.ca
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Proof of Merkle’s Theorem (  is CR  is CR)f ⇒H

✦ Suppose that  is not CR. We’ll show that  is not CR.

✦ Since  is not CR, we can efficiently find messages , with 
 and .

✦ Let        .

✦ Let        .

H f

H x, x′ ∈ {0,1}*
x ≠ x′ H(x) = H(x′ )

x = x1, x2, …, xt, b = bitlength(x), xt+1 = length block

x′ = x′ 1, x′ 2, …, x′ t′ 
, b′ = bitlength(x′ ), x′ t′ +1 = length block

142

IV f

x1

H1
f

x2

H2
f

x3

H3
f

xt+1

H(x)

xt

f
Ht

……..
Ht−1
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Proof of Merkle’s Theorem (2)
✦ We efficiently compute:

143

✦ Since  we have .H(x) = H(x′ ), Ht+1 = H′ t′ +1
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Proof of Merkle’s Theorem (3)
✦ Case 1: Now, if then . Thus,  is a 

collision for  that we have efficiently found.

✦ Case 2: Suppose next that . Then  and 

✦ Let  be the largest index,  for which  
Such an  must exist since .

✦ Then  so  is a 
collision for  that we have efficiently found.

✦ Thus,  is not collision resistant. 

b ≠ b′ , xt+1 ≠ x′ t′ +1 (Ht, xt+1), (H′ t′ 
, x′ t′ +1)

f

b = b′ t = t′ xt+1 = x′ t+1

i 0 ≤ i ≤ t, (Hi, xi+1) ≠ (H′ i, x′ i+1) .
i x ≠ x′ 

Hi+1 = f(Hi, xi+1) = f(H′ i, x′ i+1) = H′ i+1, (Hi, xi+1), (H′ i, x′ i+1)
f

f □

144
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MDx-family of hash functions

✦ MDx is a family of iterated hash functions.

✦ MD4 was proposed by Ron Rivest in 1990.

✦ MD4 has 128-bit outputs.

✦                          Professor Xiaoyun Wang et al. (2004)  
                         found collisions for MD4  

✦ Leurent (2008) discovered an algorithm for finding  
MD4 preimages in  operations.2102

145

by hand.
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MD5 hash function

✦ MD5 is a strengthened version of MD4.

✦ Designed by Ron Rivest in 1991.

✦ MD5 has 128-bit outputs.

✦ Wang and Yu (2004) found MD5 collisions in  operations.

✦ MD5 collisions can now be found in  operations, which takes a few 
seconds on a laptop computer.

✦ Sasaki & Aoki (2009) discovered a method for finding MD5 preimages in 
 steps.

239

224

2123.4

146
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MD5 hash function (2)

Summary: MD5 should not be used if collision resistance is required, but is 
probably okay as a preimage-resistant hash function.
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✦ MD5 is still used today.

✦ 2006: MD5 was implemented more than 850 times in Microsoft Windows 
source code.

✦ 2014: Microsoft issues a patch that restricts the use of MD5 in certificates 
in Windows: tinyurl.com/MicrosoftMD5.

http://tinyurl.com/MicrosoftMD5
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Flame malware

✦ Discovered in 2012, Flame malware was a highly 
sophisticated espionage tool.

✦ Targeted computers in Iran and the Middle East.

✦ Contains a forged Microsoft certificate for Windows 
code signing.

✦ Forged certificate used a new “zero-day MD5 
chosen-prefix” collision attack.

✦ Microsoft no longer allows the use of MD5 for code 
signing.
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SHA-1

✦ Secure Hash Algorithm (SHA) was designed by NSA and published by NIST in 1993 
(FIPS 180).

✦ 160-bit iterated hash function, based on MD4.

✦ Slightly modified to SHA-1 (FIPS 180-1) in 1994 in order to fix an  
undisclosed security weakness.

✦ Wang et al. (2005) found collisions for SHA in  operations.
✦ Wang et al. (2005) discovered a collision-finding algorithm for  

SHA-1 that takes  operations.

✦ The first SHA-1 collision was found on February 23, 2017.
✦ No preimage or 2nd preimage attacks that are faster than the generic attacks are 

known for SHA-1.
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SHA-2 family

✦ In 2001, NSA proposed variable output-length versions of SHA-1.

✦ Output lengths are 224 bits (SHA-224 and SHA-512/224), 256 bit 
(SHA-256 and SHA-512/256), 384 bits (SHA-384), and 512 bits 
(SHA-512).

✦ 2024: No weaknesses in any of these hash functions have been found.

✦ Note: The security levels of these hash functions against VW collision 
finding attacks are the same as the security levels of Triple-DES, 
AES-128, AES-192, and AES-256 against exhaustive key search attacks.

✦ The SHA-2 hash functions are standardized in FIPS 180-2.
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Summary: Collision resistance of iterated hash functions
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Hash function
n

Security level 
against generic 

attack VW attack 
(in bits)

Security level after  
Prof. Wang’s attacks

(in bits)

MD4 (1990) 128 64 4 (2004)

MD5 (1991) 128 64 39 (2005) —> 24

SHA (1993) 160 80 39 (2005)

SHA-1 (1994) 160 80 63 (2005)

SHA-224 224 112 112

SHA-256 256 128 128

SHA-384 384 192 192

SHA-512 512 256 256

H : {0,1}* ⟶ {0,1}n
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SHA-3 family

✦ The SHA-2 design is similar to SHA-1, and thus there were lingering 
concerns that the SHA-1 weaknesses could eventually extend to SHA-2.

✦ SHA-3: NIST hash function competition.

✦ 2008: 64 candidates submitted from around the world.

✦ 2012: Keecak was selected as the winner.

✦ Keecak uses the “sponge construction” and not the Merkle iterated hash 
design.

✦ SHA-3 is being used in practice, but is not (yet) as widely deployed as 
SHA-2.
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Description of SHA-256

✦ Iterated hash function (Merkle’s meta method).
✦ , 
✦ Compression function is .
✦ Input: bit string  of arbitrary bitlength .
✦ Output: 256-bit hash value  of .

n = 256 r = 512.
f : {0,1}256+512 ⟶ {0,1}256

x b ≥ 0
H(x) x
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IV f

x1

H1
f

x2

H2
f

x3

H3
f

xt+1

H(x)f

xt

Ht
……..

Ht−1
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SHA-256 notation

+            addition modulo 

            bitwise complement

    shift  right by  positions

    rotate  right by  positions

          bitwise AND of , 

    bitwise exclusive-OR

232

A

A ≫ s A s

A ↪ s A s

AB A B

A ⊕ B
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f(A, B, C) AB ⊕ AC

g(A, B, C) AB ⊕ AC ⊕ BC

r1(A) (A ↪ 2) ⊕ (A ↪ 13) ⊕ (A ↪ 22)
r2(A) (A ↪ 6) ⊕ (A ↪ 11) ⊕ (A ↪ 25)
r3(A) (A ↪ 7) ⊕ (A ↪ 18) ⊕ (A ≫ 3)
r4(A) (A ↪ 17) ⊕ (A ↪ 19) ⊕ (A ≫ 10)

 are 32-bit wordsA, B, C, D, E, F, G, H
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SHA-256 constants

✦ 32-bit initial chaining values (IVs): These words were obtained by taking 
the first 32 bits of the fractional parts of the square roots of the first 8 
prime numbers. 
  0x6a09e667    0xbb67ae85    0x3c6ef372    0xa54ff53a    
  0x510e527f    0x6905688c    0x1f83d9ab    0x5be0cd19

✦ Per-round integer additive constants: These words were obtained by 
taking the first 32 bits of the fractional parts of the cube roots of the first 64 
prime numbers. 
   0x428a2f98    0x71374491    0xb5c0fbcf    0xe9b5dba5 
 ……………………………………  …………………………………  0xbef9a3f7 0xc67178f2

h1 = h2 = h3 = h4 =
h5 = h6 = h7 = h8 =

y0 = y1 = y2 = y3 =
y62 = y63 =
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SHA-256 preprocessing

1. Pad  with 1, followed by as few 0’s as possible so that the bitlength is 
64 less than a multiple of 512.

2. Append the 64-bit binary representation of .

3. The formatted input is , where each  is a 32-bit word.

4. Initialize the words of the chaining variable: 

x

b mod 264

x0, x1, …, x16m−1 xi

(H1, H2, …, H7, H8) ← (h1, h2, …, h7, h8) .
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SHA-256 processing
For each  from 0 to  do the following:

✦ Copy the th block of sixteen 32-bit words into temporary storage:  
,     .

✦ Expand the 16-word block into a 64-word block: 
For  from 16 to 63 do:   

✦ Initialize working variables: .

✦ For  from 0 to 63 do: 

✦         .

✦

✦ Update chaining variable: .

Output: SHA-256( ) = .

i m − 1
i

Xj ← x16i+j 0 ≤ j ≤ 15

j Xj ← r4(Xj−2) + Xj−7 + r3(Xj−15) + Xj−16 .

(A, B, …, G, H) ← (H1, H2, …, H7, H8)
j

T1 ← H + r2(E) + f(E, F, G) + yj + Xj T2 ← r1(A) + g(A, B, C)
H ← G, G ← F, F ← E, E ← D + T1, D ← C, C ← B, B ← A, A ← T1 + T2 .

(H1, H2, …, H7, H8) ← (H1 + A, H2 + B, …, H7 + G, H8 + H)
x H1∥H2∥H3∥H4∥H5∥H6∥H7∥H8
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Performance
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Algorithm block length
(bits)

key length
(bits)

digest length 
(bits)

 

speed
(Mbytes/sec)

ChaCha20 — 256 — 323

Triple-DES 64 168 — 21

AES-128 128 128 — 170

AES-128-NI 128 128 — 2426

AES-256 128 256 — 129

AES-256-NI 128 256 — 1830

MD5 512 — 128 517
SHA-1 512 — 160 331

SHA-256 512 — 256 212
332SHA-512 1024 — 512 332

Speed benchmarks  from 
2018 on an Intel Xeon CPU 
(E3-1220 V2) at 3.10 GHz in 
64-bit mode.

Relative speeds will likely be very 
different on other processors.

Source: www.bearssl.org/speed.html

†

†

http://www.bearssl.org/speed.html

