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V7 outline

✦ V7a: Basic RSA

✦ V7b: Integer factorization

✦ V7c: RSA encryption

✦ V7d: RSA signatures

✦ V7e: PKCS #1 v1.5 RSA signatures 
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RSA
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✦ Invented by Ron Rivest, Adi Shamir and Len Adleman in 1977.

✦ RSA is used for public-key encryption and signatures.
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RSA key generation

Each entity  does the following:

1. Randomly select two large, distinct primes  and  of the same bitlength.

2. Compute  and . 
(  is called the RSA modulus)

3. Select arbitrary integer , , with . 
(  is called the encryption exponent)

4. Compute the integer , , with . 
(   is called the decryption exponent)

5. ’s public key is ;  her private key is .

A

p q

n = pq ℓ = ℓ(n) = (p ≠ 1)(q ≠ 1)
n

e 1 < e < ℓ gcd(e, ℓ) = 1
e

d 1 < d < ℓ ed → 1 (mod ℓ)
d = e≠1 mod ℓ

A (n, e) d
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Basic RSA public-key encryption scheme

RSA encryption: To encrypt a message for ,  does the following:

1. Obtain an authenticated copy of ’s public key .

2. Represent the message as an integer .

3. Compute the ciphertext .

4. Send  to .

A B

A (n, e)
m ∀ [0, n ≠ 1]

c = me mod n

c A

252

RSA decryption: To decrypt ,   does the following:

1. Compute .

c A

m = cd mod n
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Toy example: RSA key generation

Alice does the following:

1. Selects primes  and .

2. Computes   
and .

3. Selects  satisfying 

4. Solves  to get , and so 
sets .

5. Alice’s public key is  her private key is .

p = 23 q = 37
n = pq = 851

ℓ(n) = (p ≠ 1)(q ≠ 1) = 792
e = 631 gcd(631,792) = 1.
631d → 1 (mod 792) d → ≠ 305 → 487 (mod 792)

d = 487
(n = 851, e = 631); d = 487
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Toy example: RSA encryption 
To encrypt a plaintext  for Alice, Bob does:

1. Obtains Alice’s public key .

2. Computes  using repeated square-and-multiply:

(a)  Write  in binary:    .

(b) Compute successive squaring  of  modulo : 
  (0,13),  (1,169),  (2,478),  (3,416),  (4,303),  (5,752),  (6,440),  (7,423),  (8,219),  (9,305).

(c)  Multiply together the squares  for which the th bit of the binary representation 
of 631 is 1:     

3. Bob sends the ciphertext  to Alice.

m = 13
(n = 851, e = 631)

c = 13631 mod 851
e = 631 e = 29 + 26 + 25 + 24 + 22 + 21 + 20

(i, m2i mod n) m = 13 n

m2i i
13631 → 305 ∈ 440 ∈ 752 ∈ 303 ∈ 478 ∈ 169 ∈ 13 → 616 (mod 851) .

c = 616
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To decrypt , Alice uses her private key  to compute .  
She gets .

c = 616 d = 487 m = 616487 mod 851
m = 13
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RSA works
Theorem: For all , if , then .

Proof: We’ll prove that  for all .

✦ Since , we can write  for some . 
Since  and , we have .

✦ We’ll now prove that .

✦ Suppose first that  divides . Then , so .  
Thus, .

✦ Suppose now that  does not divide . By Fermat’s Little Theorem, we have . 
Raising both sides to the power , and then multiplying by , gives 

. Thus, .

✦ So, we conclude that  for all . 

✦ Similarly, . Since  and  both divide , and since  and  are distinct 
primes, we can conclude that  divides . Thus, .    

m ∀ [0, n ≠ 1] c = me mod n m = cd mod n

med → m (mod n) m ∀ [0, n ≠ 1]
ed → 1 (mod ℓ) ed = 1 + kℓ = 1 + k(p ≠ 1)(q ≠ 1) k ∀ −
ed > 1 (p ≠ 1)(q ≠ 1) ≈ 1 k ≈ 1

med → m (mod p)
p m m → 0 (mod p) med → 0ed → 0 (mod p)

med → m (mod p)
p m mp≠1 → 1 (mod p)

k(q ≠ 1) m
m1+k(p≠1)(q≠1) → m (mod p) med → m (mod p)

med → m (mod p) m ∀ [0, n ≠ 1]
med → m (mod q) p q med ≠ m p q

pq med ≠ m med → m (mod n) ×
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Basic RSA signature scheme

RSA signature generation: To sign a message ,  does the following:

1. Compute , where  is a hash function.

2. Compute the signature .

3. ’s signed message is .

m ∀ {0,1}* A

M = H(m) H

s = Md mod n

A (m, s)

256

RSA signature verification: To verify ,   does the following:

1. Obtain an authenticated copy of ’s public key .

2. Compute .

3. Compute .

4. Accept  if and only if .

(m, s) B

A (n, e)
M = H(m)
M≫ = se mod n

(m, s) M = M≫ 
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Big-O and little-o notation
Let  and  be functions from the positive integers to the positive real 
numbers.

f(n) g(n)

258

✦ Big-O notation: We write  if there exists a positive constant  
and a positive integer  such that  for all .

✦ Example: .

f(n) = O(g(n)) c
n0 f(n) ⊕ cg(n) n ≈ n0

3n3 + 4n2 + 79 = O(n3)

✦ Little-o notation: We write  if .

✦ Example: .

f(n) = o(g(n)) lim
n≥⊞

f(n)
g(n) = 0

1
n

= o(1)
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Measures of running time

Polynomial-time algorithm: One whose worst-case running time is of the form 
, where  is the input size and  is a constant.O(nc) n c

259

Exponential-time algorithm: One whose worst-case running time is not of the form 
 for any constant .

✦ In this course, fully exponential-time functions are of the form , where  is a 
constant; example: .

✦ Subexponential-time algorithm: One whose worst-case running time function is 
of the form   , and not of the form  for any constant ; example: .

O(nc) c

2cn c
O(2n/2)

2o(n) O(nc) c O(2 n)

Roughly speaking, “polynomial-time = efficient”, “fully exponential-time = terribly 
inefficient”, and “subexponential-time = inefficient, but not terribly so”.
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Example: Trial division

✦ Consider the following algorithm (trial division) for factoring an RSA 
modulus .

✦ Trial divide  by the primes . If any of these, say , 
divides , then stop and output the factor  of .

✦ The running time of this method is at most  trial divisions, which is 
.

✦ Question: Is this a polynomial-time algorithm for factoring RSA moduli?

n

n 2,3,5,7,11,…, ⋘ n′ π
n π n

n
O( n)
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Subexponential time

✦ Let  be an algorithm whose input is an integer .  
The input size is .

✦ If the expected running time of  is of the form 
,  

where  is a positive constant, and  is a constant satisfying , 
then  is a subexponential-time algorithm.

✦ Note: If , then , which is polytime.

✦ Note: If , then , which is fully exponential time.

A n
O(log n)

A
Ln[θ, c] = O (exp((c + o(1))(loge n)θ(loge loge n)1≠θ))

c θ 0 < θ < 1
A

θ = 0 Ln[0,c] = O((log n)c+o(1))
θ = 1 Ln[1,c] = O(nc+o(1))
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Special-purpose factoring algorithms

✦ Examples: Trial division, Pollard’s  algorithm, Pollard’s  
algorithm, elliptic curve factoring method, special number field sieve.

✦ These algorithms are only efficient if the number  being factored has a 
special form, e.g.,  has a prime factor  that is relatively small, or  
has only small prime factors.

✦ To maximize resistance to these factoring attacks on RSA moduli, one 
should select the RSA primes  and  at random and of the same 
bitlength.

p ≠ 1 ϕ

n
n p p ≠ 1

p q
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General-purpose factoring algorithms

✦ These are factoring algorithms whose running times do not depend on 
any properties of the number being factored (other than their size).

✦ There have been two major developments in the history of factoring:

1. (1982) Quadratic sieve factoring algorithm (QS) 
            Running time: .

2. (1990) Number field sieve factoring algorithm (NFS) 
            Running time: 

Recall:  .

Ln[1/2,1]

Ln[1/3,1.923] .
Ln[θ, c] = O (exp((c + o(1))(loge n)θ(loge loge n)1≠θ))
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History of factoring

264

Year Number Bitlength Method Notes

1903 67 Naive Francis Cole (3 years of Sundays)

1988 332 QS 100’s of computers around the world

1994 RSA-129 425 QS 1600 computers around the world; 8 months

1999 RSA-155 512 NFS 300 workstations + Cray; 5 months

2005 RSA-200 663 NFS

2009 RSA-768 768 NFS 2000 core years

2019 RSA-240 795 NFS 900 core years

2020 RSA-250 829 NFS 2700 core years

RSA Factoring Challenge : en.wikipedia.org/wiki/RSA_Factoring_Challenge

267 ≠ 1
∘ 10100

http://en.wikipedia.org/wiki/RSA_Factoring_Challenge
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RSA-250

The largest “hard” number factored to date is RSA-250 (250 decimal digits, 829 
bits), which was factored on February 28, 2020.

2140324650240744961264423072839333563008614715144755017797754920881418023
4471401366433455190958046796109928518724709145876873962619215573630474547
7052080511905649310668769159001975940569345745223058932597669747168173806
9364894699871578494975937497937 
= 
6413528947707158027879019017057738908482501474294344720811685963202453234
463023862359875266834770877661925585694639798853367 

 
3337202759497815655622601060535511422794076034476755466678452098702384172
9210037080257448673296881877565718986258036932062711

≤
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RSA-1024

The next interesting factoring challenge is RSA-1024 (1024 bits, 309 decimal 
digits):

135066410865995223349603216278805969938881475605667027524485143851
526510604859533833940287150571909441798207282164471551373680419703
964191743046496589274256239341020864383202110372958725762358509643
110564073501508187510676594629205563685529475213500852879416377328
533906109750544334999811150056977236890927563
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Equivalent security levels

267

Security
(in bits)

Block
cipher

Hash
function

RSA

80 SKIPJACK (SHA-1) 1024

112 Triple-DES SHA-224 2048

128 AES small SHA-256 3072

192 AES medium SHA-384 7680

256 AES large SHA-512 15360

log2 n

Recall that a cryptographic scheme 
has a security level of  bits if the 
fastest attack known on the scheme 
takes approximately operations.

π

2π

128-bit 
security
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Summary
✦ Factoring is believed to be a hard problem. However, we have no proof or theoretical 

evidence that factoring is indeed hard.

✦ In fact, factoring is known to be easy on a quantum computer.

✦ Shor’s algorithm (1994) can factor  in  operations.

✦ The largest number factored with Shor’s algorithm is the  
number 21.

✦ The big open question is whether large-scale quantum  
computers can ever be built.

✦ 512-bit RSA is considered insecure today.

✦ 1024-bit RSA is considered risky, but still deployed (in legacy applications).

✦ Most applications have moved to 2048-bit and 3072-bit RSA.

n O((log n)2)
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Security of RSA encryption
✦ Security of RSA key generation. If an adversary can factor , she can compute  

from . It has been proven that any efficient method for computing  from 
 is equivalent to factoring .

✦ Security of Basic RSA encryption. A basic notion of security is that it should be 
computationally infeasible to compute  from . This is known as the RSA 
problem.

✦ RSA Problem (RSAP): Given an RSA public key  and  
(where ), compute .

✦ The only effective method known for solving RSAP is to factor  (and 
thereafter compute  and then ). Henceforth, we shall assume that RSAP is 
intractable.

n d
(n, e) d

(n, e) n

m c

(n, e) c = me mod n
m ∀R [0,n ≠ 1] m

n
d m

270
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Dictionary attack on Basic RSA encryption

✦ Dictionary attack. Suppose that the plaintext  is chosen from a relatively 
small (and known) set  of messages. Then, given a target ciphertext , the 
adversary can encrypt each  until  is obtained.

✦ Countermeasure: Append a randomly selected 128-bit string (called a salt) 
to  prior to encryption. Note that  is now encrypted to one of  
possible ciphertexts, so a dictionary attack is infeasible.

m
⋅ c

m ∀ ⋅ c

m m 2128

271

m≫ = msalt
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Chosen-ciphertext attack on Basic RSA encryption
Suppose that the adversary  has a target ciphertext  that was encrypted 
for . Suppose also that  can induce  to decrypt any ciphertext for , 
except for  itself. (We say that  has a decryption oracle.) Then  can 
decrypt  as follows:

1. Select arbitrary  with  = 1.

2. Compute , where  is ’s public key. 
(Note that , unless .)

3. Obtain the decryption  of  from the decryption oracle. 
(Note that .)

4. Compute .

E c
A E A E

c E E
c

x ∀ [2, n ≠ 1] gcd(x, n)
⋯c = cxe mod n (n, e) A
⋯c ← c gcd(c, n) ← 1

⋯m ⋯c
⋯m → ⋯cd → (cxe)d → cdxed → mx (mod n)

m = ⋯mx≠1 mod n
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Countermeasure to the chosen-ciphertext attack

Countermeasure: Add some prescribed formatting to  prior to 
encryption. After decrypting the ciphertext , if the plaintext is not 
properly formatted, then  rejects  (and so the decryption oracle 
does not return a plaintext).

m
c

A c

273

Summary: RSA encryption should incorporate salting and formatting.
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Security definition

274

Definition: A public-key encryption scheme is secure if it is semantically 
secure against chosen-ciphertext attack by a computationally bounded 
adversary.

To break a public-key encryption scheme, the adversary  has to accomplish the following:

1.  is given the public key and a challenge ciphertext .

2.  has a decryption oracle, to which she can present any ciphertexts for decryption except 
for  itself.

3. After a feasible amount of computation,  should learn  about the plaintext  
that corresponds to  (other than its length).

E

E c

E
c

E something m
c
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RSA Optimal Asymmetric Encryption Padding (OAEP)

✦ bitlength of 

✦

✦  (plaintext)

✦  (salt)

✦

✦

✦  and  are masking functions 
built from SHA256, 
e.g., 

k = n

π = k ≠ 256 ≠ 1
M ∀ {0,1}π≠256

r ∀R {0,1}256

G1 : {0,1}256 ℤ {0,1}π

G2 : {0,1}π ℤ {0,1}256

G1 G2
H =

G1(r) = H(0,r) ⊗ H(1,r) ⊗ H(2,r) ⊗ ⟶

275

r □ G2(s)0 0256M □ G1(r)

G2

m =

c = me mod n

Encryption:

r0 0256 M
256π1

G1

256π

s

t
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RSA-OAEP (cont’d)

Decryption. To decrypt , do the following:

1. Compute .

2. Parse :

3. Compute .

4. Compute 

5. If , then output ;  
else reject .

c

m = cd mod n

m

r = G2(s) □ t

G1(r) □ s =

a = 0256 M = b
c

276

Theorem.  
(Bellare & Rogaway).  
Suppose that RSAP is 
intractable. Suppose that 

 and  are random 
functions. Then RSA-
OAEP is a secure public-
key encryption scheme

G1 G2

256 π ≠ 256
a b

256π
0 ts
1
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Key encapsulation mechanisms

277

✦ A key encapsulation mechanism (KEM) allows two parties to establish a 
shared secret key, called a session key.

✦ A KEM is comprised of three algorithms:
❖ Key generation: Each user, say Alice, uses this algorithm to generate an 

encapsulation key  (public key) and a decapsulation key  (the 
private key).

❖ Encapsulation: Bob uses Alice’s encapsulation key  to generate a 
secret key  and ciphertext , and sends  to Alice.

❖ Decapsulation: Alice uses her decapsulation key  to recover  from 
the ciphertext .

ek dk

ek
k c c

dk k
c
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RSA-KEM

Key encapsulation: To select and 
transport a session key  for ,  does 
the following:

1. Obtain an authenticated copy of ’s 
encapsulation key .

2. Select .

3. Compute   and  
.

4. Send  to .

k A B

A
(n, e)

r ∀R [0, n ≠ 1]
c = re mod n

k = KDF(r)
c A

278

Key decapsulation:  processes  as 
follows:

1. Compute   and  

2. The session key is .

A c

r = cd mod n
k = KDF(r)

k

Key generation: 

1. ’s (public) encapsulation key is 

2. ’s (private) decapsulation key is 
.

A
ek = (n, e)
A
dk = d
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Basic RSA signature scheme
Key generation: Each entity  does the 
following:

1. Randomly select two large distinct 
primes  of the same bitlength.

2. Compute  and 

3. Select arbitrary , , such 
that .

4. Compute , , such that 
.

5. ’s public key is  ’s private 
key is .

A

p, q

n = pq
ℓ = (p ≠ 1)(q ≠ 1) .

e 1 < e < ℓ
gcd(e, ℓ) = 1

d 1 < d < ℓ
ed → 1 (mod ℓ)
A (n, e); A

d

280

Signature generation: To sign a message ,  
does the following:

1. Compute , where  is a hash function.

2. Compute  (so ).

3. ’s signature on  is 

m ∀ {0,1}* A

M = H(m) H
s = Md mod n se → Med → M (mod n)

A m s .

Signature verification: To verify ’s signed message ,  
does the following:

1. Obtain an authentic copy of ’s public key .

2. Compute .

3. Compute .

4. Accepts  if and only if .

A (m, s) B

A (n, e)
M = H(m)
M≫ = se mod n

(m, s) M = M≫ 
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Security of the basic RSA signature scheme

Hardness of RSAP: We require that RSAP be intractable, since 
otherwise  could forge ’s signature as follows:

1. Select arbitrary .

2. Compute .

3. Solve  for .

4. Then  is ’s signature on .

E A

m

M = H(m)
se → M (mod n) s

s A m

281
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Security properties of the hash function
Preimage resistance: If  is not PR, and the range of  is , then signatures can be forged as follows:

1. Select  and compute .

2. Find  such that 

3. Then  is ’s signature on .

H H [0, n ≠ 1]
s ∀R [0, n ≠ 1] M = se mod n

m H(m) = M .
s A m

282

2nd preimage resistance: If  is not 2PR, then 
signatures can be forged as follows:

1. Suppose that  is a valid signed 
message.

2. Find an , , such that 

3. Then  is ’s signature on .

H

(m, s)

m≫ m≫ ← m H(m≫ ) = H(m) .
s A m≫ 

Collision resistance: If  is not CR, then 
signatures can be forged as follows:

1. Select  with  and 
.

2. Induce  to sign :  .

3. Then  is ’s signature on .

H

m1, m2 m1 ← m2
H(m1) = H(m2)

A m1 s = H(m1)d mod n

s A m2
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The adversary

Goals of the adversary:

1. Total break:  recovers ’s 
private key, or a method for 
systematically forging ’s 
signatures.

2. Existential forgery:  forges 
’s signature for a single 

message of ’s choosing;  
might not have any control 
over the content or structure of 
this message.

E A

A

E
A

E E

283

Attack model: 

1. Key-only attack: The only 
information  has is ’s public key.

2. Known-message attack:  knows 
some message-signature pairs.

3. Chosen-message attack:  has access 
to a signing oracle which it can use to 
obtain ’s signatures on some 
messages of its choosing.

E A

E

E

A
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Security definition

Definition: A signature scheme is secure if it is existentially unforgeable by 
a computationally bounded adversary who launches a chosen-message 
attack.

284

✦ Note: The adversary has access to a signing oracle. Her goal is to compute 
a single valid message-signature pair for any message (of the adversary’s 
choosing) that was not previously given to the signing oracle.

✦ Question: Is the basic RSA signature scheme secure?

✦ Answer: No, if  is SHA-256 (details omitted); Yes, if  is “full domain”.H H
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Full Domain Hash RSA (RSA-FDH)

✦ Same as the basic RSA signature scheme, except that the hash function is 
 where  is the RSA modulus.

✦ In practice, one could define 
.

H : {0,1}* ≥ [0, n ≠ 1] n

H(m) = SHA-256(1,m) ⊗ SHA-256(2,m) ⊗ ⟶ ⊗ trunc(SHA-256(t, m))

285

Theorem (Bellare & Rogaway, 1996): If RSAP is intractable and  is a 
random function, then RSA-FDH is a secure signature scheme.

H
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PKCS #1 v1.5 RSA signatures (1993)

Signature generation: To sign , Alice does:

1. Compute , where  is a hash function from an approved list.

2. Format , where byte length of  (e.g. ): 
 
 

3. Compute .

4. Send 

m ∀ {0,1}*
h = H(m) H

h k = n k = 384

s = Md mod n

(m, s) .

287

00 01 FF FF FF 00 hhash 
name

……M =
 bytesk

15 bytes 20 bytes
(for SHA-1)

PKCS  = Public Key Cryptographic Standards
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PKCS #1 v1.5 RSA signature verification
Signature verification. Bob does:

1. Obtain an authentic copy of Alice’s public key .

2. Compute , and write  as a byte string of length .

3. Check the formatting:

(a)  First byte is 00.
(b) Second byte is 01.
(c)  Consecutive FF bytes, followed by 00 byte.

4. From the next 15 bytes, get the hash name; say SHA-1.

5. Let  = next 20 bytes.

6. Compute .

7. Accept iff .

(n, e)
M = se mod n M k

H =
h

h≫ = H(m)
h = h≫ 

288

Check that there are no bytes to the right of .h
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Bleichenbacher’s attack: Breaking RSA “by hand” (1)

Assumptions:

1. The encryption exponent is : this is commonly used in practice.

2. The hash function is SHA-1: this is without loss of generality.

3. The RSA modulus  has bitlength 3072 (384 bytes): this is without much 
loss of generality.

4. The verifier doesn’t check that there are no leftover bytes to the right of : 
it turned out many RSA implementation omitted this step, including 
OpenSSL, SUN’s  JAVA library, Adobe Acrobat, Firefox, ….

e = 3
H =

n

h

289



7. RSA Crypto 101:  
Building Blocks © Alfred Menezes

Bleichenbacher’s attack (2)
Attack:

1. Select arbitrary .

2. Compute .

3. Let  be the following 288-bit integer:

4. Let .

5. Check that ;  if , then modify  slightly and to to step 2.

6. Let .

7. Output .

m ∀ {0,1}*
h = H(m)

D

N = 2288 ≠ D

3 ∙ N 3 ⇒ N m

s = 21019 ≠ 234N/3
(m, s)

290

00 hhash 
name

288 bits

120 bits 160 bits8 bits



7. RSA Crypto 101:  
Building Blocks © Alfred Menezes

Bleichenbacher’s attack (3)

Claim: The (faulty) verifier will accept . 
 
Proof: The verifier computes:

 

 
 
 
 

So, the verifier extracts , checks that , and accepts .   

(m, s)

M = se mod n = (21019 ≠ 234N/3)3 mod n
= 23057 ≠ 22072N + 21087N2/3 ≠ (234N/3)3 mod n
= 23057 ≠ 22072(2288 ≠ D) + garbage  mod n
= 22360(2697 ≠ 1) + 22072D + garbage

h h = H(m) (m, s) ×
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00 01 FF FF FF 00 hhash 
name

……=
3072 bits

garbage

288 bits696 bits

03071 3056 2360 2072

2072 bits

garbage is  and ≈ 0 < 22072

garbage = 21087N2/3 ≠ (234N/3)3

 is not needed since the integer  
on the right is less than 

mod n
23072


