
RSA

CRYPTO 101: Building Blocks
©Alfred Menezes

cryptography101.ca

7

http://cryptography101.ca

7. RSA Crypto 101:
Building Blocks © Alfred Menezes

V7 outline

✦ V7a: Basic RSA

✦ V7b: Integer factorization

✦ V7c: RSA encryption

✦ V7d: RSA signatures

✦ V7e: PKCS #1 v1.5 RSA signatures

248

Basic RSA
V7a

RSA

CRYPTO 101: Building Blocks
©Alfred Menezes

cryptography101.ca

http://cryptography101.ca

7. RSA Crypto 101:
Building Blocks © Alfred Menezes

RSA

250

✦ Invented by Ron Rivest, Adi Shamir and Len Adleman in 1977.

✦ RSA is used for public-key encryption and signatures.

7. RSA Crypto 101:
Building Blocks © Alfred Menezes

RSA key generation

Each entity does the following:

1. Randomly select two large, distinct primes and of the same bitlength.

2. Compute and .
(is called the RSA modulus)

3. Select arbitrary integer , , with .
(is called the encryption exponent)

4. Compute the integer , , with .
(is called the decryption exponent)

5. ’s public key is ; her private key is .

A

p q

n = pq ℓ = ℓ(n) = (p ≠ 1)(q ≠ 1)
n

e 1 < e < ℓ gcd(e, ℓ) = 1
e

d 1 < d < ℓ ed → 1 (mod ℓ)
d = e≠1 mod ℓ

A (n, e) d

251

7. RSA Crypto 101:
Building Blocks © Alfred Menezes

Basic RSA public-key encryption scheme

RSA encryption: To encrypt a message for , does the following:

1. Obtain an authenticated copy of ’s public key .

2. Represent the message as an integer .

3. Compute the ciphertext .

4. Send to .

A B

A (n, e)
m ∀ [0, n ≠ 1]

c = me mod n

c A

252

RSA decryption: To decrypt , does the following:

1. Compute .

c A

m = cd mod n

7. RSA Crypto 101:
Building Blocks © Alfred Menezes

Toy example: RSA key generation

Alice does the following:

1. Selects primes and .

2. Computes
and .

3. Selects satisfying

4. Solves to get , and so
sets .

5. Alice’s public key is her private key is .

p = 23 q = 37
n = pq = 851

ℓ(n) = (p ≠ 1)(q ≠ 1) = 792
e = 631 gcd(631,792) = 1.
631d → 1 (mod 792) d → ≠ 305 → 487 (mod 792)

d = 487
(n = 851, e = 631); d = 487

253

7. RSA Crypto 101:
Building Blocks © Alfred Menezes

Toy example: RSA encryption
To encrypt a plaintext for Alice, Bob does:

1. Obtains Alice’s public key .

2. Computes using repeated square-and-multiply:

(a) Write in binary: .

(b) Compute successive squaring of modulo :
 (0,13), (1,169), (2,478), (3,416), (4,303), (5,752), (6,440), (7,423), (8,219), (9,305).

(c) Multiply together the squares for which the th bit of the binary representation
of 631 is 1:

3. Bob sends the ciphertext to Alice.

m = 13
(n = 851, e = 631)

c = 13631 mod 851
e = 631 e = 29 + 26 + 25 + 24 + 22 + 21 + 20

(i, m2i mod n) m = 13 n

m2i i
13631 → 305 ∈ 440 ∈ 752 ∈ 303 ∈ 478 ∈ 169 ∈ 13 → 616 (mod 851) .

c = 616

254

To decrypt , Alice uses her private key to compute .
She gets .

c = 616 d = 487 m = 616487 mod 851
m = 13

7. RSA Crypto 101:
Building Blocks © Alfred Menezes

RSA works
Theorem: For all , if , then .

Proof: We’ll prove that for all .

✦ Since , we can write for some .
Since and , we have .

✦ We’ll now prove that .

✦ Suppose first that divides . Then , so .
Thus, .

✦ Suppose now that does not divide . By Fermat’s Little Theorem, we have .
Raising both sides to the power , and then multiplying by , gives

. Thus, .

✦ So, we conclude that for all .

✦ Similarly, . Since and both divide , and since and are distinct
primes, we can conclude that divides . Thus, .

m ∀ [0, n ≠ 1] c = me mod n m = cd mod n

med → m (mod n) m ∀ [0, n ≠ 1]
ed → 1 (mod ℓ) ed = 1 + kℓ = 1 + k(p ≠ 1)(q ≠ 1) k ∀ −
ed > 1 (p ≠ 1)(q ≠ 1) ≈ 1 k ≈ 1

med → m (mod p)
p m m → 0 (mod p) med → 0ed → 0 (mod p)

med → m (mod p)
p m mp≠1 → 1 (mod p)

k(q ≠ 1) m
m1+k(p≠1)(q≠1) → m (mod p) med → m (mod p)

med → m (mod p) m ∀ [0, n ≠ 1]
med → m (mod q) p q med ≠ m p q

pq med ≠ m med → m (mod n) ×

255

7. RSA Crypto 101:
Building Blocks © Alfred Menezes

Basic RSA signature scheme

RSA signature generation: To sign a message , does the following:

1. Compute , where is a hash function.

2. Compute the signature .

3. ’s signed message is .

m ∀ {0,1}* A

M = H(m) H

s = Md mod n

A (m, s)

256

RSA signature verification: To verify , does the following:

1. Obtain an authenticated copy of ’s public key .

2. Compute .

3. Compute .

4. Accept if and only if .

(m, s) B

A (n, e)
M = H(m)
M≫ = se mod n

(m, s) M = M≫

Integer factorization
V7b

RSA

CRYPTO 101: Building Blocks
©Alfred Menezes

cryptography101.ca

http://cryptography101.ca

7. RSA Crypto 101:
Building Blocks © Alfred Menezes

Big-O and little-o notation
Let and be functions from the positive integers to the positive real
numbers.

f(n) g(n)

258

✦ Big-O notation: We write if there exists a positive constant
and a positive integer such that for all .

✦ Example: .

f(n) = O(g(n)) c
n0 f(n) ⊕ cg(n) n ≈ n0

3n3 + 4n2 + 79 = O(n3)

✦ Little-o notation: We write if .

✦ Example: .

f(n) = o(g(n)) lim
n≥⊞

f(n)
g(n) = 0

1
n

= o(1)

7. RSA Crypto 101:
Building Blocks © Alfred Menezes

Measures of running time

Polynomial-time algorithm: One whose worst-case running time is of the form
, where is the input size and is a constant.O(nc) n c

259

Exponential-time algorithm: One whose worst-case running time is not of the form
 for any constant .

✦ In this course, fully exponential-time functions are of the form , where is a
constant; example: .

✦ Subexponential-time algorithm: One whose worst-case running time function is
of the form , and not of the form for any constant ; example: .

O(nc) c

2cn c
O(2n/2)

2o(n) O(nc) c O(2 n)

Roughly speaking, “polynomial-time = efficient”, “fully exponential-time = terribly
inefficient”, and “subexponential-time = inefficient, but not terribly so”.

7. RSA Crypto 101:
Building Blocks © Alfred Menezes

Example: Trial division

✦ Consider the following algorithm (trial division) for factoring an RSA
modulus .

✦ Trial divide by the primes . If any of these, say ,
divides , then stop and output the factor of .

✦ The running time of this method is at most trial divisions, which is
.

✦ Question: Is this a polynomial-time algorithm for factoring RSA moduli?

n

n 2,3,5,7,11,…, ⋘ n′ π
n π n

n
O(n)

260

7. RSA Crypto 101:
Building Blocks © Alfred Menezes

Subexponential time

✦ Let be an algorithm whose input is an integer .
The input size is .

✦ If the expected running time of is of the form
,

where is a positive constant, and is a constant satisfying ,
then is a subexponential-time algorithm.

✦ Note: If , then , which is polytime.

✦ Note: If , then , which is fully exponential time.

A n
O(log n)

A
Ln[θ, c] = O (exp((c + o(1))(loge n)θ(loge loge n)1≠θ))

c θ 0 < θ < 1
A

θ = 0 Ln[0,c] = O((log n)c+o(1))
θ = 1 Ln[1,c] = O(nc+o(1))

261

7. RSA Crypto 101:
Building Blocks © Alfred Menezes

Special-purpose factoring algorithms

✦ Examples: Trial division, Pollard’s algorithm, Pollard’s
algorithm, elliptic curve factoring method, special number field sieve.

✦ These algorithms are only efficient if the number being factored has a
special form, e.g., has a prime factor that is relatively small, or
has only small prime factors.

✦ To maximize resistance to these factoring attacks on RSA moduli, one
should select the RSA primes and at random and of the same
bitlength.

p ≠ 1 ϕ

n
n p p ≠ 1

p q

262

7. RSA Crypto 101:
Building Blocks © Alfred Menezes

General-purpose factoring algorithms

✦ These are factoring algorithms whose running times do not depend on
any properties of the number being factored (other than their size).

✦ There have been two major developments in the history of factoring:

1. (1982) Quadratic sieve factoring algorithm (QS)
 Running time: .

2. (1990) Number field sieve factoring algorithm (NFS)
 Running time:

Recall: .

Ln[1/2,1]

Ln[1/3,1.923] .
Ln[θ, c] = O (exp((c + o(1))(loge n)θ(loge loge n)1≠θ))

263

7. RSA Crypto 101:
Building Blocks © Alfred Menezes

History of factoring

264

Year Number Bitlength Method Notes

1903 67 Naive Francis Cole (3 years of Sundays)

1988 332 QS 100’s of computers around the world

1994 RSA-129 425 QS 1600 computers around the world; 8 months

1999 RSA-155 512 NFS 300 workstations + Cray; 5 months

2005 RSA-200 663 NFS

2009 RSA-768 768 NFS 2000 core years

2019 RSA-240 795 NFS 900 core years

2020 RSA-250 829 NFS 2700 core years

RSA Factoring Challenge : en.wikipedia.org/wiki/RSA_Factoring_Challenge

267 ≠ 1
∘ 10100

http://en.wikipedia.org/wiki/RSA_Factoring_Challenge

7. RSA Crypto 101:
Building Blocks © Alfred Menezes

RSA-250

The largest “hard” number factored to date is RSA-250 (250 decimal digits, 829
bits), which was factored on February 28, 2020.

2140324650240744961264423072839333563008614715144755017797754920881418023
4471401366433455190958046796109928518724709145876873962619215573630474547
7052080511905649310668769159001975940569345745223058932597669747168173806
9364894699871578494975937497937
=
6413528947707158027879019017057738908482501474294344720811685963202453234
463023862359875266834770877661925585694639798853367

3337202759497815655622601060535511422794076034476755466678452098702384172
9210037080257448673296881877565718986258036932062711

≤

265

7. RSA Crypto 101:
Building Blocks © Alfred Menezes

RSA-1024

The next interesting factoring challenge is RSA-1024 (1024 bits, 309 decimal
digits):

135066410865995223349603216278805969938881475605667027524485143851
526510604859533833940287150571909441798207282164471551373680419703
964191743046496589274256239341020864383202110372958725762358509643
110564073501508187510676594629205563685529475213500852879416377328
533906109750544334999811150056977236890927563

266

7. RSA Crypto 101:
Building Blocks © Alfred Menezes

Equivalent security levels

267

Security
(in bits)

Block
cipher

Hash
function

RSA

80 SKIPJACK (SHA-1) 1024

112 Triple-DES SHA-224 2048

128 AES small SHA-256 3072

192 AES medium SHA-384 7680

256 AES large SHA-512 15360

log2 n

Recall that a cryptographic scheme
has a security level of bits if the
fastest attack known on the scheme
takes approximately operations.

π

2π

128-bit
security

7. RSA Crypto 101:
Building Blocks © Alfred Menezes

Summary
✦ Factoring is believed to be a hard problem. However, we have no proof or theoretical

evidence that factoring is indeed hard.

✦ In fact, factoring is known to be easy on a quantum computer.

✦ Shor’s algorithm (1994) can factor in operations.

✦ The largest number factored with Shor’s algorithm is the
number 21.

✦ The big open question is whether large-scale quantum
computers can ever be built.

✦ 512-bit RSA is considered insecure today.

✦ 1024-bit RSA is considered risky, but still deployed (in legacy applications).

✦ Most applications have moved to 2048-bit and 3072-bit RSA.

n O((log n)2)

268

RSA encryption
V7c

RSA

CRYPTO 101: Building Blocks
©Alfred Menezes

cryptography101.ca

http://cryptography101.ca

7. RSA Crypto 101:
Building Blocks © Alfred Menezes

Security of RSA encryption
✦ Security of RSA key generation. If an adversary can factor , she can compute

from . It has been proven that any efficient method for computing from
 is equivalent to factoring .

✦ Security of Basic RSA encryption. A basic notion of security is that it should be
computationally infeasible to compute from . This is known as the RSA
problem.

✦ RSA Problem (RSAP): Given an RSA public key and
(where), compute .

✦ The only effective method known for solving RSAP is to factor (and
thereafter compute and then). Henceforth, we shall assume that RSAP is
intractable.

n d
(n, e) d

(n, e) n

m c

(n, e) c = me mod n
m ∀R [0,n ≠ 1] m

n
d m

270

7. RSA Crypto 101:
Building Blocks © Alfred Menezes

Dictionary attack on Basic RSA encryption

✦ Dictionary attack. Suppose that the plaintext is chosen from a relatively
small (and known) set of messages. Then, given a target ciphertext , the
adversary can encrypt each until is obtained.

✦ Countermeasure: Append a randomly selected 128-bit string (called a salt)
to prior to encryption. Note that is now encrypted to one of
possible ciphertexts, so a dictionary attack is infeasible.

m
⋅ c

m ∀ ⋅ c

m m 2128

271

m≫ = msalt

7. RSA Crypto 101:
Building Blocks © Alfred Menezes

Chosen-ciphertext attack on Basic RSA encryption
Suppose that the adversary has a target ciphertext that was encrypted
for . Suppose also that can induce to decrypt any ciphertext for ,
except for itself. (We say that has a decryption oracle.) Then can
decrypt as follows:

1. Select arbitrary with = 1.

2. Compute , where is ’s public key.
(Note that , unless .)

3. Obtain the decryption of from the decryption oracle.
(Note that .)

4. Compute .

E c
A E A E

c E E
c

x ∀ [2, n ≠ 1] gcd(x, n)
⋯c = cxe mod n (n, e) A
⋯c ← c gcd(c, n) ← 1

⋯m ⋯c
⋯m → ⋯cd → (cxe)d → cdxed → mx (mod n)

m = ⋯mx≠1 mod n

272

7. RSA Crypto 101:
Building Blocks © Alfred Menezes

Countermeasure to the chosen-ciphertext attack

Countermeasure: Add some prescribed formatting to prior to
encryption. After decrypting the ciphertext , if the plaintext is not
properly formatted, then rejects (and so the decryption oracle
does not return a plaintext).

m
c

A c

273

Summary: RSA encryption should incorporate salting and formatting.

7. RSA Crypto 101:
Building Blocks © Alfred Menezes

Security definition

274

Definition: A public-key encryption scheme is secure if it is semantically
secure against chosen-ciphertext attack by a computationally bounded
adversary.

To break a public-key encryption scheme, the adversary has to accomplish the following:

1. is given the public key and a challenge ciphertext .

2. has a decryption oracle, to which she can present any ciphertexts for decryption except
for itself.

3. After a feasible amount of computation, should learn about the plaintext
that corresponds to (other than its length).

E

E c

E
c

E something m
c

7. RSA Crypto 101:
Building Blocks © Alfred Menezes

RSA Optimal Asymmetric Encryption Padding (OAEP)

✦ bitlength of

✦

✦ (plaintext)

✦ (salt)

✦

✦

✦ and are masking functions
built from SHA256,
e.g.,

k = n

π = k ≠ 256 ≠ 1
M ∀ {0,1}π≠256

r ∀R {0,1}256

G1 : {0,1}256 ℤ {0,1}π

G2 : {0,1}π ℤ {0,1}256

G1 G2
H =

G1(r) = H(0,r) ⊗ H(1,r) ⊗ H(2,r) ⊗ ⟶

275

r □ G2(s)0 0256M □ G1(r)

G2

m =

c = me mod n

Encryption:

r0 0256 M
256π1

G1

256π

s

t

7. RSA Crypto 101:
Building Blocks © Alfred Menezes

RSA-OAEP (cont’d)

Decryption. To decrypt , do the following:

1. Compute .

2. Parse :

3. Compute .

4. Compute

5. If , then output ;
else reject .

c

m = cd mod n

m

r = G2(s) □ t

G1(r) □ s =

a = 0256 M = b
c

276

Theorem.
(Bellare & Rogaway).
Suppose that RSAP is
intractable. Suppose that

 and are random
functions. Then RSA-
OAEP is a secure public-
key encryption scheme

G1 G2

256 π ≠ 256
a b

256π
0 ts
1

7. RSA Crypto 101:
Building Blocks © Alfred Menezes

Key encapsulation mechanisms

277

✦ A key encapsulation mechanism (KEM) allows two parties to establish a
shared secret key, called a session key.

✦ A KEM is comprised of three algorithms:
❖ Key generation: Each user, say Alice, uses this algorithm to generate an

encapsulation key (public key) and a decapsulation key (the
private key).

❖ Encapsulation: Bob uses Alice’s encapsulation key to generate a
secret key and ciphertext , and sends to Alice.

❖ Decapsulation: Alice uses her decapsulation key to recover from
the ciphertext .

ek dk

ek
k c c

dk k
c

7. RSA Crypto 101:
Building Blocks © Alfred Menezes

RSA-KEM

Key encapsulation: To select and
transport a session key for , does
the following:

1. Obtain an authenticated copy of ’s
encapsulation key .

2. Select .

3. Compute and
.

4. Send to .

k A B

A
(n, e)

r ∀R [0, n ≠ 1]
c = re mod n

k = KDF(r)
c A

278

Key decapsulation: processes as
follows:

1. Compute and

2. The session key is .

A c

r = cd mod n
k = KDF(r)

k

Key generation:

1. ’s (public) encapsulation key is

2. ’s (private) decapsulation key is
.

A
ek = (n, e)
A
dk = d

RSA signatures
V7d

RSA

CRYPTO 101: Building Blocks
©Alfred Menezes

cryptography101.ca

http://cryptography101.ca

7. RSA Crypto 101:
Building Blocks © Alfred Menezes

Basic RSA signature scheme
Key generation: Each entity does the
following:

1. Randomly select two large distinct
primes of the same bitlength.

2. Compute and

3. Select arbitrary , , such
that .

4. Compute , , such that
.

5. ’s public key is ’s private
key is .

A

p, q

n = pq
ℓ = (p ≠ 1)(q ≠ 1) .

e 1 < e < ℓ
gcd(e, ℓ) = 1

d 1 < d < ℓ
ed → 1 (mod ℓ)
A (n, e); A

d

280

Signature generation: To sign a message ,
does the following:

1. Compute , where is a hash function.

2. Compute (so).

3. ’s signature on is

m ∀ {0,1}* A

M = H(m) H
s = Md mod n se → Med → M (mod n)

A m s .

Signature verification: To verify ’s signed message ,
does the following:

1. Obtain an authentic copy of ’s public key .

2. Compute .

3. Compute .

4. Accepts if and only if .

A (m, s) B

A (n, e)
M = H(m)
M≫ = se mod n

(m, s) M = M≫

7. RSA Crypto 101:
Building Blocks © Alfred Menezes

Security of the basic RSA signature scheme

Hardness of RSAP: We require that RSAP be intractable, since
otherwise could forge ’s signature as follows:

1. Select arbitrary .

2. Compute .

3. Solve for .

4. Then is ’s signature on .

E A

m

M = H(m)
se → M (mod n) s

s A m

281

7. RSA Crypto 101:
Building Blocks © Alfred Menezes

Security properties of the hash function
Preimage resistance: If is not PR, and the range of is , then signatures can be forged as follows:

1. Select and compute .

2. Find such that

3. Then is ’s signature on .

H H [0, n ≠ 1]
s ∀R [0, n ≠ 1] M = se mod n

m H(m) = M .
s A m

282

2nd preimage resistance: If is not 2PR, then
signatures can be forged as follows:

1. Suppose that is a valid signed
message.

2. Find an , , such that

3. Then is ’s signature on .

H

(m, s)

m≫ m≫ ← m H(m≫) = H(m) .
s A m≫

Collision resistance: If is not CR, then
signatures can be forged as follows:

1. Select with and
.

2. Induce to sign : .

3. Then is ’s signature on .

H

m1, m2 m1 ← m2
H(m1) = H(m2)

A m1 s = H(m1)d mod n

s A m2

7. RSA Crypto 101:
Building Blocks © Alfred Menezes

The adversary

Goals of the adversary:

1. Total break: recovers ’s
private key, or a method for
systematically forging ’s
signatures.

2. Existential forgery: forges
’s signature for a single

message of ’s choosing;
might not have any control
over the content or structure of
this message.

E A

A

E
A

E E

283

Attack model:

1. Key-only attack: The only
information has is ’s public key.

2. Known-message attack: knows
some message-signature pairs.

3. Chosen-message attack: has access
to a signing oracle which it can use to
obtain ’s signatures on some
messages of its choosing.

E A

E

E

A

7. RSA Crypto 101:
Building Blocks © Alfred Menezes

Security definition

Definition: A signature scheme is secure if it is existentially unforgeable by
a computationally bounded adversary who launches a chosen-message
attack.

284

✦ Note: The adversary has access to a signing oracle. Her goal is to compute
a single valid message-signature pair for any message (of the adversary’s
choosing) that was not previously given to the signing oracle.

✦ Question: Is the basic RSA signature scheme secure?

✦ Answer: No, if is SHA-256 (details omitted); Yes, if is “full domain”.H H

7. RSA Crypto 101:
Building Blocks © Alfred Menezes

Full Domain Hash RSA (RSA-FDH)

✦ Same as the basic RSA signature scheme, except that the hash function is
 where is the RSA modulus.

✦ In practice, one could define
.

H : {0,1}* ≥ [0, n ≠ 1] n

H(m) = SHA-256(1,m) ⊗ SHA-256(2,m) ⊗ ⟶ ⊗ trunc(SHA-256(t, m))

285

Theorem (Bellare & Rogaway, 1996): If RSAP is intractable and is a
random function, then RSA-FDH is a secure signature scheme.

H

PKCS #1 v1.5 RSA signatures
V7e

RSA

CRYPTO 101: Building Blocks
©Alfred Menezes

cryptography101.ca

http://cryptography101.ca

7. RSA Crypto 101:
Building Blocks © Alfred Menezes

PKCS #1 v1.5 RSA signatures (1993)

Signature generation: To sign , Alice does:

1. Compute , where is a hash function from an approved list.

2. Format , where byte length of (e.g.):

3. Compute .

4. Send

m ∀ {0,1}*
h = H(m) H

h k = n k = 384

s = Md mod n

(m, s) .

287

00 01 FF FF FF 00 hhash
name

……M =
 bytesk

15 bytes 20 bytes
(for SHA-1)

PKCS = Public Key Cryptographic Standards

7. RSA Crypto 101:
Building Blocks © Alfred Menezes

PKCS #1 v1.5 RSA signature verification
Signature verification. Bob does:

1. Obtain an authentic copy of Alice’s public key .

2. Compute , and write as a byte string of length .

3. Check the formatting:

(a) First byte is 00.
(b) Second byte is 01.
(c) Consecutive FF bytes, followed by 00 byte.

4. From the next 15 bytes, get the hash name; say SHA-1.

5. Let = next 20 bytes.

6. Compute .

7. Accept iff .

(n, e)
M = se mod n M k

H =
h

h≫ = H(m)
h = h≫

288

Check that there are no bytes to the right of .h

7. RSA Crypto 101:
Building Blocks © Alfred Menezes

Bleichenbacher’s attack: Breaking RSA “by hand” (1)

Assumptions:

1. The encryption exponent is : this is commonly used in practice.

2. The hash function is SHA-1: this is without loss of generality.

3. The RSA modulus has bitlength 3072 (384 bytes): this is without much
loss of generality.

4. The verifier doesn’t check that there are no leftover bytes to the right of :
it turned out many RSA implementation omitted this step, including
OpenSSL, SUN’s JAVA library, Adobe Acrobat, Firefox, ….

e = 3
H =

n

h

289

7. RSA Crypto 101:
Building Blocks © Alfred Menezes

Bleichenbacher’s attack (2)
Attack:

1. Select arbitrary .

2. Compute .

3. Let be the following 288-bit integer:

4. Let .

5. Check that ; if , then modify slightly and to to step 2.

6. Let .

7. Output .

m ∀ {0,1}*
h = H(m)

D

N = 2288 ≠ D

3 ∙ N 3 ⇒ N m

s = 21019 ≠ 234N/3
(m, s)

290

00 hhash
name

288 bits

120 bits 160 bits8 bits

7. RSA Crypto 101:
Building Blocks © Alfred Menezes

Bleichenbacher’s attack (3)

Claim: The (faulty) verifier will accept .

Proof: The verifier computes:

So, the verifier extracts , checks that , and accepts .

(m, s)

M = se mod n = (21019 ≠ 234N/3)3 mod n
= 23057 ≠ 22072N + 21087N2/3 ≠ (234N/3)3 mod n
= 23057 ≠ 22072(2288 ≠ D) + garbage mod n
= 22360(2697 ≠ 1) + 22072D + garbage

h h = H(m) (m, s) ×

291

00 01 FF FF FF 00 hhash
name

……=
3072 bits

garbage

288 bits696 bits

03071 3056 2360 2072

2072 bits

garbage is and ≈ 0 < 22072

garbage = 21087N2/3 ≠ (234N/3)3

 is not needed since the integer
on the right is less than

mod n
23072

