

7

RSA

CRYPTO 101: Building Blocks

©Alfred Menezes

cryptography101.ca

V7 outline

- ◆ V7a: Basic RSA
- ◆ V7b: Integer factorization
- ◆ V7c: RSA encryption
- ◆ V7d: RSA signatures
- ◆ V7e: PKCS #1 v1.5 RSA signatures

V7a

Basic RSA

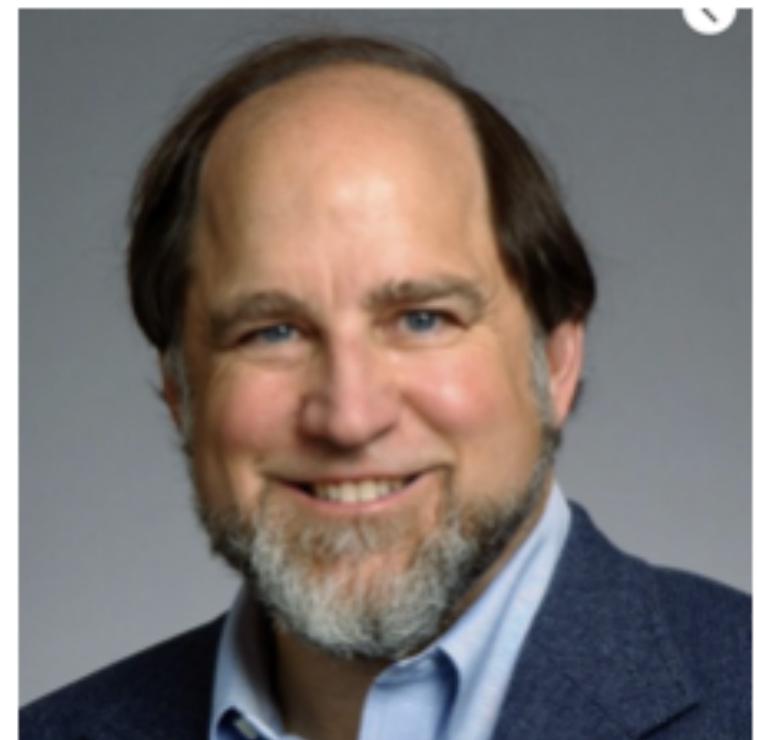
RSA

CRYPTO 101: Building Blocks

©Alfred Menezes

cryptography101.ca

- ◆ Invented by Ron **Rivest**, Adi **Shamir** and Len **Adleman** in 1977.
- ◆ RSA is used for **public-key encryption** and **signatures**.



Ron Rivest

CC BY-SA 4.0

Adi Shamir

Erik Tews

CC BY-SA 3.0

Len Adleman

CC BY-SA 3.0

A Method for Obtaining Digital Signatures and Public- Key Cryptosystems

R. L. Rivest, A. Shamir, and L. Adleman

RSA key generation

Each entity A does the following:

1. Randomly select two large, distinct primes p and q of the same bitlength.
2. Compute $n = pq$ and $\phi = \phi(n) = (p - 1)(q - 1)$.
(n is called the **RSA modulus**)
3. Select arbitrary integer e , $1 < e < \phi$, with $\gcd(e, \phi) = 1$.
(e is called the **encryption exponent**)
4. Compute the integer d , $1 < d < \phi$, with $ed \equiv 1 \pmod{\phi}$.
($d = e^{-1} \pmod{\phi}$ is called the **decryption exponent**)
5. A 's public key is (n, e) ; her private key is d .

Basic RSA public-key encryption scheme

RSA encryption: To encrypt a message for A, B does the following:

1. Obtain an authenticated copy of A 's public key (n, e) .
2. Represent the message as an integer $m \in [0, n - 1]$.
3. Compute the **ciphertext** $c = m^e \bmod n$.
4. Send c to A .

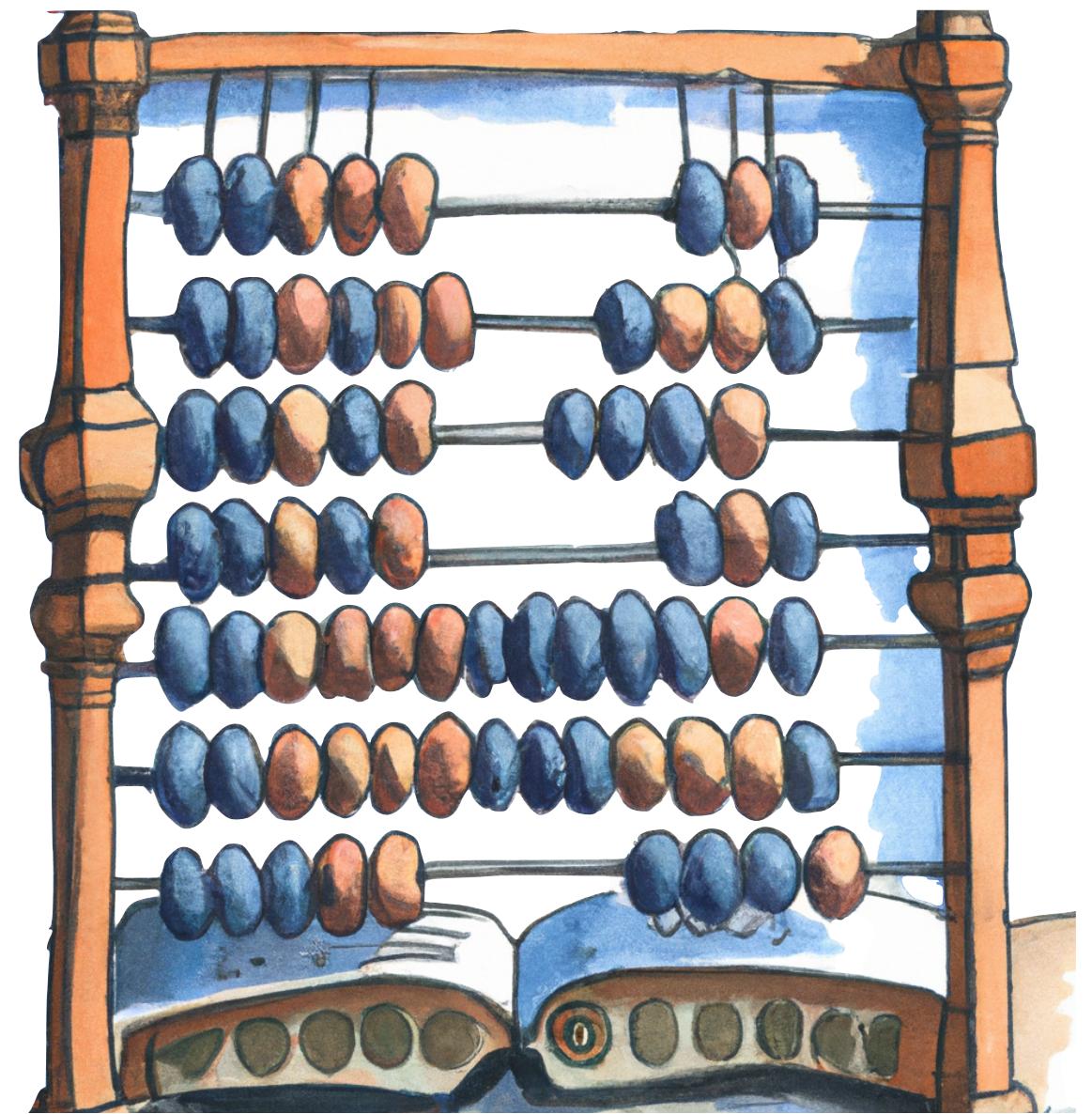
RSA decryption: To decrypt c , A does the following:

1. Compute $m = c^d \bmod n$.

Toy example: RSA key generation

Alice does the following:

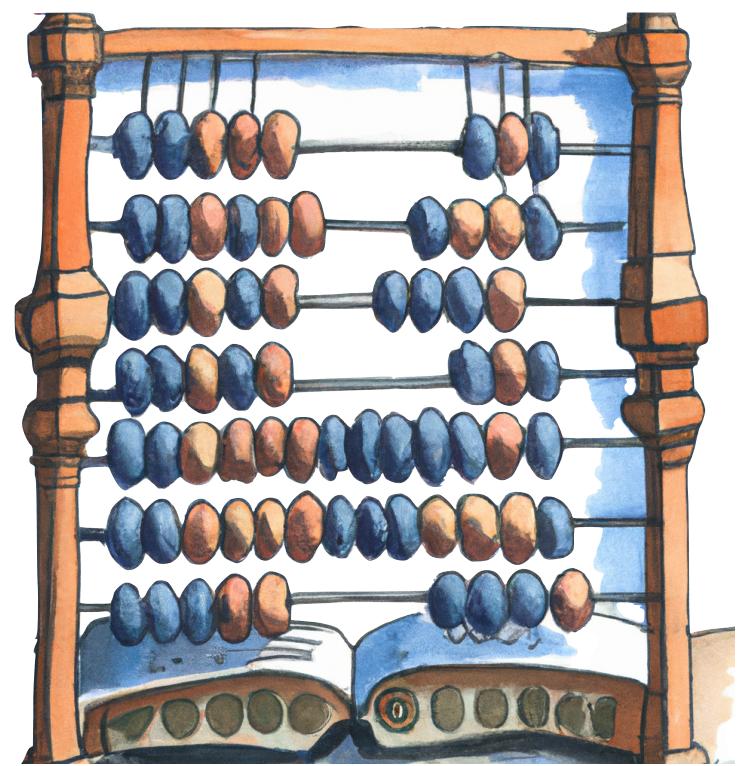
1. Selects primes $p = 23$ and $q = 37$.
2. Computes $n = pq = 851$
and $\phi(n) = (p - 1)(q - 1) = 792$.
3. Selects $e = 631$ satisfying $\gcd(631, 792) = 1$.
4. Solves $631d \equiv 1 \pmod{792}$ to get $d \equiv -305 \equiv 487 \pmod{792}$, and so sets $d = 487$.
5. Alice's **public key** is $(n = 851, e = 631)$; her **private key** is $d = 487$.



Toy example: RSA encryption

To **encrypt** a plaintext $m = 13$ for Alice, Bob does:

1. Obtains Alice's public key ($n = 851$, $e = 631$).
2. Computes $c = 13^{631} \bmod 851$ using repeated square-and-multiply:
 - (a) Write $e = 631$ in binary: $e = 2^9 + 2^6 + 2^5 + 2^4 + 2^2 + 2^1 + 2^0$.
 - (b) Compute successive squaring ($i, m^{2^i} \bmod n$) of $m = 13$ modulo n :
(0,13), (1,169), (2,478), (3,416), (4,303), (5,752), (6,440), (7,423), (8,219), (9,305).
 - (c) Multiply together the squares m^{2^i} for which the i th bit of the binary representation of 631 is 1: $13^{631} \equiv 305 \cdot 440 \cdot 752 \cdot 303 \cdot 478 \cdot 169 \cdot 13 \equiv 616 \pmod{851}$.
3. Bob sends the ciphertext $c = 616$ to Alice.



To **decrypt** $c = 616$, Alice uses her private key $d = 487$ to compute $m = 616^{487} \bmod 851$. She gets $m = 13$.

RSA works

Theorem: For all $m \in [0, n - 1]$, if $c = m^e \pmod n$, then $m = c^d \pmod n$.

Proof: We'll prove that $m^{ed} \equiv m \pmod n$ for all $m \in [0, n - 1]$.

- ♦ Since $ed \equiv 1 \pmod \phi$, we can write $ed = 1 + k\phi = 1 + k(p - 1)(q - 1)$ for some $k \in \mathbb{Z}$. Since $ed > 1$ and $(p - 1)(q - 1) \geq 1$, we have $k \geq 1$.
- ♦ We'll now prove that $m^{ed} \equiv m \pmod p$.
- ♦ Suppose first that p divides m . Then $m \equiv 0 \pmod p$, so $m^{ed} \equiv 0^{ed} \equiv 0 \pmod p$. Thus, $m^{ed} \equiv m \pmod p$.
- ♦ Suppose now that p does not divide m . By Fermat's Little Theorem, we have $m^{p-1} \equiv 1 \pmod p$. Raising both sides to the power $k(q - 1)$, and then multiplying by m , gives $m^{1+k(p-1)(q-1)} \equiv m \pmod p$. Thus, $m^{ed} \equiv m \pmod p$.
- ♦ So, we conclude that $m^{ed} \equiv m \pmod p$ for all $m \in [0, n - 1]$.
- ♦ Similarly, $m^{ed} \equiv m \pmod q$. Since p and q both divide $m^{ed} - m$, and since p and q are distinct primes, we can conclude that pq divides $m^{ed} - m$. Thus, $m^{ed} \equiv m \pmod n$. \square

Basic RSA signature scheme

RSA signature generation: To sign a message $m \in \{0,1\}^*$, A does the following:

1. Compute $M = H(m)$, where H is a hash function.
2. Compute the signature $s = M^d \bmod n$.
3. A 's signed message is (m, s) .

RSA signature verification: To verify (m, s) , B does the following:

1. Obtain an authenticated copy of A 's public key (n, e) .
2. Compute $M = H(m)$.
3. Compute $M' = s^e \bmod n$.
4. Accept (m, s) if and only if $M = M'$.

v7b

Integer factorization

RSA

CRYPTO 101: Building Blocks

©Alfred Menezes

cryptography101.ca

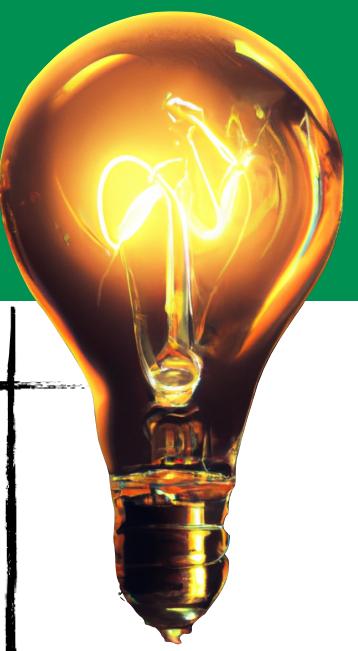
Big-O and little-o notation

Let $f(n)$ and $g(n)$ be functions from the positive integers to the positive real numbers.

- ◆ **Big-O notation:** We write $f(n) = O(g(n))$ if there exists a positive constant c and a positive integer n_0 such that $f(n) \leq cg(n)$ for all $n \geq n_0$.
- ◆ **Example:** $3n^3 + 4n^2 + 79 = O(n^3)$.

- ◆ **Little-o notation:** We write $f(n) = o(g(n))$ if $\lim_{n \rightarrow \infty} \frac{f(n)}{g(n)} = 0$.
- ◆ **Example:** $\frac{1}{n} = o(1)$.

Measures of running time



Polynomial-time algorithm: One whose worst-case running time is of the form $O(n^c)$, where n is the *input size* and c is a constant.

Exponential-time algorithm: One whose worst-case running time is not of the form $O(n^c)$ for any constant c .

- ♦ In this course, **fully exponential-time** functions are of the form 2^{cn} , where c is a constant; example: $O(2^{n/2})$.
- ♦ **Subexponential-time algorithm:** One whose worst-case running time function is of the form $2^{o(n)}$, and not of the form $O(n^c)$ for any constant c ; example: $O(2^{\sqrt{n}})$.

Roughly speaking, “polynomial-time = *efficient*”, “fully exponential-time = *terribly inefficient*”, and “subexponential-time = *inefficient, but not terribly so*”.

Example: Trial division

- ◆ Consider the following algorithm (trial division) for factoring an RSA modulus n .
- ◆ Trial divide n by the primes $2, 3, 5, 7, 11, \dots, \lfloor \sqrt{n} \rfloor$. If any of these, say ℓ , divides n , then stop and output the factor ℓ of n .
- ◆ The running time of this method is at most \sqrt{n} trial divisions, which is $O(\sqrt{n})$.
- ◆ **Question:** Is this a polynomial-time algorithm for factoring RSA moduli?

Subexponential time

- ♦ Let A be an algorithm whose input is an integer n .
The input size is $O(\log n)$.
- ♦ If the expected running time of A is of the form
$$L_n[\alpha, c] = O\left(\exp((c + o(1))(\log_e n)^\alpha(\log_e \log_e n)^{1-\alpha})\right),$$
where c is a positive constant, and α is a constant satisfying $0 < \alpha < 1$,
then A is a **subexponential-time** algorithm.
- ♦ Note: If $\alpha = 0$, then $L_n[0,c] = O((\log n)^{c+o(1)})$, which is **polytime**.
- ♦ Note: If $\alpha = 1$, then $L_n[1,c] = O(n^{c+o(1)})$, which is **fully exponential time**.

Special-purpose factoring algorithms

- ◆ **Examples:** Trial division, Pollard's $p - 1$ algorithm, Pollard's ρ algorithm, elliptic curve factoring method, special number field sieve.
- ◆ These algorithms are only efficient if the number n being factored has a **special form**, e.g., n has a prime factor p that is relatively small, or $p - 1$ has only small prime factors.
- ◆ To maximize resistance to these factoring attacks on RSA moduli, one should select the RSA primes p and q at **random** and of the **same bitlength**.

General-purpose factoring algorithms

- ♦ These are factoring algorithms whose running times do not depend on any properties of the number being factored (other than their size).
- ♦ There have been two major developments in the history of factoring:
 1. (1982) **Quadratic sieve factoring algorithm (QS)**
Running time: $L_n[1/2, 1]$.
 2. (1990) **Number field sieve factoring algorithm (NFS)**
Running time: $L_n[1/3, 1.923]$.

Recall: $L_n[\alpha, c] = O\left(\exp((c + o(1))(\log_e n)^\alpha (\log_e \log_e n)^{1-\alpha})\right)$.

History of factoring

Year	Number	Bitlength	Method	Notes
1903	$2^{67} - 1$	67	Naive	Francis Cole (3 years of Sundays)
1988	$\approx 10^{100}$	332	QS	100's of computers around the world
1994	RSA-129	425	QS	1600 computers around the world; 8 months
1999	RSA-155	512	NFS	300 workstations + Cray; 5 months
2005	RSA-200	663	NFS	
2009	RSA-768	768	NFS	2000 core years
2019	RSA-240	795	NFS	900 core years
2020	RSA-250	829	NFS	2700 core years

RSA Factoring Challenge : en.wikipedia.org/wiki/RSA_Factoring_Challenge

RSA-250

The largest “hard” number factored to date is **RSA-250** (250 decimal digits, 829 bits), which was factored on February 28, 2020.

2140324650240744961264423072839333563008614715144755017797754920881418023
4471401366433455190958046796109928518724709145876873962619215573630474547
7052080511905649310668769159001975940569345745223058932597669747168173806
9364894699871578494975937497937

=

6413528947707158027879019017057738908482501474294344720811685963202453234
463023862359875266834770877661925585694639798853367

×

3337202759497815655622601060535511422794076034476755466678452098702384172
9210037080257448673296881877565718986258036932062711

RSA-1024

The next interesting factoring challenge is **RSA-1024** (1024 bits, 309 decimal digits):

```
135066410865995223349603216278805969938881475605667027524485143851
526510604859533833940287150571909441798207282164471551373680419703
964191743046496589274256239341020864383202110372958725762358509643
110564073501508187510676594629205563685529475213500852879416377328
533906109750544334999811150056977236890927563
```

Equivalent security levels

Security (in bits)	Block cipher	Hash function	RSA $\log_2 n$
80	SKIPJACK	(SHA-1)	1024
112	Triple-DES	SHA-224	2048
128	AES small	SHA-256	3072
192	AES medium	SHA-384	7680
256	AES large	SHA-512	15360

Recall that a cryptographic scheme has a **security level** of ℓ bits if the fastest attack known on the scheme takes approximately 2^ℓ operations.

Summary

- ♦ Factoring is **believed** to be a hard problem. However, we have no **proof** or **theoretical evidence** that factoring is indeed hard.
- ♦ In fact, factoring is known to be **easy** on a quantum computer.
 - ♦ **Shor's algorithm** (1994) can factor n in $O((\log n)^2)$ operations.
 - ♦ The largest number factored with Shor's algorithm is the number **21**.
 - ♦ *The big open question is whether large-scale quantum computers can ever be built.*
- ♦ 512-bit RSA is considered insecure today.
- ♦ 1024-bit RSA is considered risky, but still deployed (in legacy applications).
- ♦ Most applications have moved to **2048-bit** and **3072-bit** RSA.

V7c

RSA encryption

RSA

CRYPTO 101: Building Blocks

©Alfred Menezes

cryptography101.ca

Security of RSA encryption

- ♦ **Security of RSA key generation.** If an adversary can factor n , she can compute d from (n, e) . It has been proven that any efficient method for computing d from (n, e) is equivalent to factoring n .
- ♦ **Security of Basic RSA encryption.** A basic notion of security is that it should be computationally infeasible to compute m from c . This is known as the RSA problem.
- ♦ **RSA Problem (RSAP):** Given an RSA public key (n, e) and $c = m^e \bmod n$ (where $m \in_R [0, n - 1]$), compute m .
- ♦ The only effective method known for solving RSAP is to factor n (and thereafter compute d and then m). Henceforth, we shall assume that RSAP is *intractable*.

Dictionary attack on Basic RSA encryption

- ♦ **Dictionary attack.** Suppose that the plaintext m is chosen from a relatively small (and known) set \mathcal{M} of messages. Then, given a target ciphertext c , the adversary can encrypt each $m \in \mathcal{M}$ until c is obtained.
- ♦ **Countermeasure:** Append a randomly selected 128-bit string (called a **salt**) to m prior to encryption. Note that m is now encrypted to one of 2^{128} possible ciphertexts, so a dictionary attack is infeasible.

$$m' = \boxed{\text{salt} \quad m}$$

Chosen-ciphertext attack on Basic RSA encryption

Suppose that the adversary E has a target ciphertext c that was encrypted for A . Suppose also that E can induce A to decrypt *any* ciphertext for E , *except for c itself*. (We say that E has a **decryption oracle**.) Then E can decrypt c as follows:

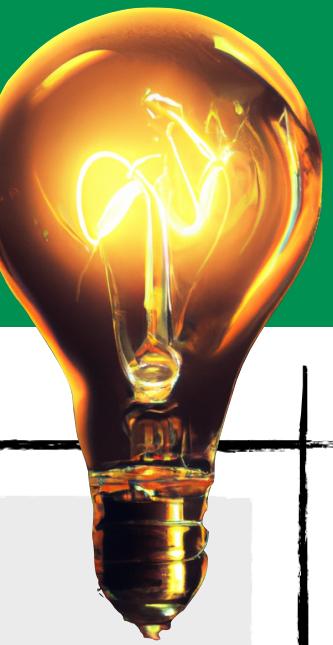
1. Select arbitrary $x \in [2, n - 1]$ with $\gcd(x, n) = 1$.
2. Compute $\hat{c} = cx^e \bmod n$, where (n, e) is A 's public key.
(Note that $\hat{c} \neq c$, unless $\gcd(c, n) \neq 1$.)
3. Obtain the decryption \hat{m} of \hat{c} from the decryption oracle.
(Note that $\hat{m} \equiv \hat{c}^d \equiv (cx^e)^d \equiv c^d x^{ed} \equiv mx \pmod{n}$.)
4. Compute $m = \hat{m}x^{-1} \bmod n$.

Countermeasure to the chosen-ciphertext attack

Countermeasure: Add some prescribed formatting to m prior to encryption. After decrypting the ciphertext c , if the plaintext is not properly formatted, then A rejects c (and so the decryption oracle does not return a plaintext).

Summary: RSA encryption should incorporate **salting** and **formatting**.

Security definition



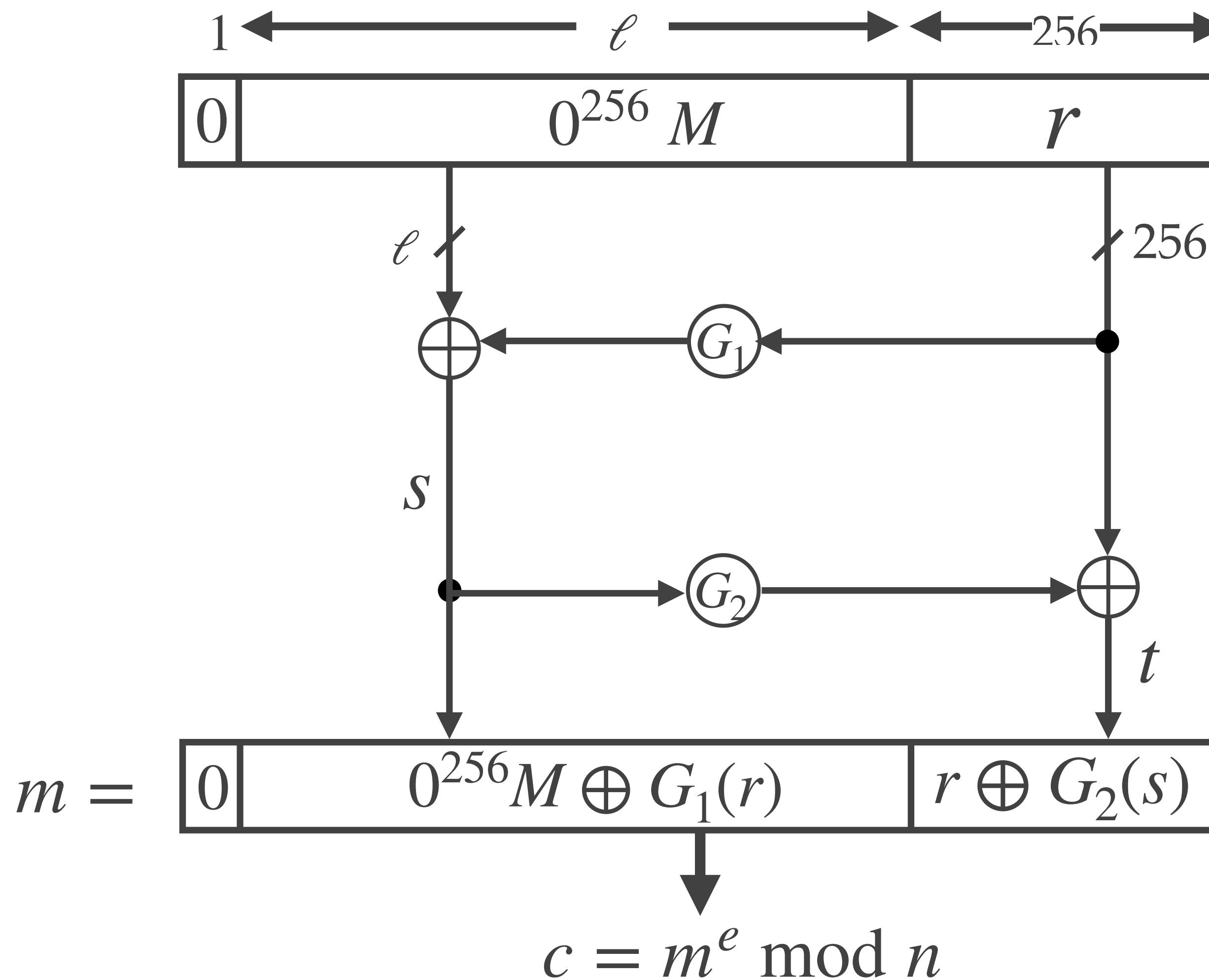
Definition: A public-key encryption scheme is **secure** if it is semantically secure against chosen-ciphertext attack by a computationally bounded adversary.

To **break** a public-key encryption scheme, the adversary E has to accomplish the following:

1. E is given the **public key** and a **challenge ciphertext** c .
2. E has a **decryption oracle**, to which she can present any ciphertexts for decryption *except for c itself*.
3. After a feasible amount of computation, E should learn *something* about the plaintext m that corresponds to c (other than its length).

RSA Optimal Asymmetric Encryption Padding (OAEP)

Encryption:



- $k = \text{bitlength of } n$
- $\ell = k - 256 - 1$
- $M \in \{0,1\}^{\ell-256}$ (plaintext)
- $r \in_R \{0,1\}^{256}$ (salt)
- $G_1 : \{0,1\}^{256} \rightarrow \{0,1\}^\ell$
- $G_2 : \{0,1\}^\ell \rightarrow \{0,1\}^{256}$
- G_1 and G_2 are masking functions built from $H = \text{SHA256}$,
e.g., $G_1(r) = H(0,r) \parallel H(1,r) \parallel H(2,r) \parallel \dots$

RSA-OAEP (cont'd)

Decryption. To decrypt c , do the following:

1. Compute $m = c^d \bmod n$.

2. Parse m :

3. Compute $r = G_2(s) \oplus t$.

4. Compute $G_1(r) \oplus s =$

5. If $a = 0^{256}$, then output $M = b$; else reject c .

Theorem.

(Bellare & Rogaway). Suppose that RSAP is intractable. Suppose that G_1 and G_2 are random functions. Then RSA-OAEP is a secure public-key encryption scheme

Key encapsulation mechanisms

- ♦ A **key encapsulation mechanism** (KEM) allows two parties to establish a shared secret key, called a session key.
- ♦ A KEM is comprised of three algorithms:
 - ❖ **Key generation:** Each user, say Alice, uses this algorithm to generate an **encapsulation key** ek (public key) and a **decapsulation key** dk (the private key).
 - ❖ **Encapsulation:** Bob uses Alice's encapsulation key ek to generate a secret key k and ciphertext c , and sends c to Alice.
 - ❖ **Decapsulation:** Alice uses her decapsulation key dk to recover k from the ciphertext c .

Key encapsulation: To select and transport a session key k for A, B does the following:

1. Obtain an authenticated copy of A 's encapsulation key (n, e) .
2. Select $r \in_R [0, n - 1]$.
3. Compute $c = r^e \bmod n$ and $k = \text{KDF}(r)$.
4. Send c to A .

Key generation:

1. A 's (public) encapsulation key is $ek = (n, e)$
2. A 's (private) decapsulation key is $dk = d$.

Key decapsulation: A processes c as follows:

1. Compute $r = c^d \bmod n$ and $k = \text{KDF}(r)$
2. The session key is k .

v7d

RSA signatures

RSA

CRYPTO 101: Building Blocks

©Alfred Menezes

cryptography101.ca

Basic RSA signature scheme

Key generation: Each entity A does the following:

1. Randomly select two large distinct primes p, q of the same bitlength.
2. Compute $n = pq$ and $\phi = (p - 1)(q - 1)$.
3. Select arbitrary e , $1 < e < \phi$, such that $\gcd(e, \phi) = 1$.
4. Compute d , $1 < d < \phi$, such that $ed \equiv 1 \pmod{\phi}$.
5. A 's public key is (n, e) ; A 's private key is d .

Signature generation: To sign a message $m \in \{0,1\}^*$, A does the following:

1. Compute $M = H(m)$, where H is a hash function.
2. Compute $s = M^d \pmod{n}$ (so $s^e \equiv M^{ed} \equiv M \pmod{n}$).
3. A 's signature on m is s .

Signature verification: To verify A 's signed message (m, s) , B does the following:

1. Obtain an authentic copy of A 's public key (n, e) .
2. Compute $M = H(m)$.
3. Compute $M' = s^e \pmod{n}$.
4. Accepts (m, s) if and only if $M = M'$.

Security of the basic RSA signature scheme

Hardness of RSAP: We require that RSAP be intractable, since otherwise E could forge A 's signature as follows:

1. Select arbitrary m .
2. Compute $M = H(m)$.
3. Solve $s^e \equiv M \pmod{n}$ for s .
4. Then s is A 's signature on m .

Security properties of the hash function

Preimage resistance: If H is not PR, and the range of H is $[0, n - 1]$, then signatures can be forged as follows:

1. Select $s \in_R [0, n - 1]$ and compute $M = s^e \bmod n$.
2. Find m such that $H(m) = M$.
3. Then s is A 's signature on m .

2nd preimage resistance: If H is not 2PR, then signatures can be forged as follows:

1. Suppose that (m, s) is a valid signed message.
2. Find an m' , $m' \neq m$, such that $H(m') = H(m)$.
3. Then s is A 's signature on m' .

Collision resistance: If H is not CR, then signatures can be forged as follows:

1. Select m_1, m_2 with $m_1 \neq m_2$ and $H(m_1) = H(m_2)$.
2. Induce A to sign m_1 : $s = H(m_1)^d \bmod n$.
3. Then s is A 's signature on m_2 .

The adversary

Goals of the adversary:

1. **Total break:** E recovers A 's private key, or a method for systematically forging A 's signatures.
2. **Existential forgery:** E forges A 's signature for a single message of E 's choosing; E might not have any control over the content or structure of this message.

Attack model:

1. **Key-only attack:** The only information E has is A 's public key.
2. **Known-message attack:** E knows some message-signature pairs.
3. **Chosen-message attack:** E has access to a signing oracle which it can use to obtain A 's signatures on some messages of its choosing.

Security definition

Definition: A signature scheme is **secure** if it is existentially unforgeable by a computationally bounded adversary who launches a chosen-message attack.

- ♦ **Note:** The adversary has access to a signing oracle. Her goal is to compute a single valid message-signature pair for any message (of the adversary's choosing) that was not previously given to the signing oracle.
- ♦ **Question:** Is the basic RSA signature scheme secure?
- ♦ **Answer:** No, if H is SHA-256 (details omitted); Yes, if H is “full domain”.

Full Domain Hash RSA (RSA-FDH)

- ♦ Same as the basic RSA signature scheme, except that the hash function is $H : \{0,1\}^* \rightarrow [0, n-1]$ where n is the RSA modulus.
- ♦ In practice, one could define
$$H(m) = \text{SHA-256}(1,m) \parallel \text{SHA-256}(2,m) \parallel \cdots \parallel \text{trunc}(\text{SHA-256}(t,m)).$$

Theorem (Bellare & Rogaway, 1996): If RSAP is intractable and H is a random function, then RSA-FDH is a secure signature scheme.

v7e

PKCS #1 v1.5 RSA signatures

RSA

CRYPTO 101: Building Blocks

©Alfred Menezes

cryptography101.ca

PKCS #1 v1.5 RSA signatures (1993)

PKCS = Public Key Cryptographic Standards

Signature generation: To sign $m \in \{0,1\}^*$, Alice does:

1. Compute $h = H(m)$, where H is a hash function from an approved list.
2. Format h , where $k = \text{byte length of } n$ (e.g. $k = 384$):

3. Compute $s = M^d \bmod n$.
4. Send (m, s) .

PKCS #1 v1.5 RSA signature verification

Signature verification. Bob does:

1. Obtain an authentic copy of Alice's public key (n, e) .
2. Compute $M = s^e \bmod n$, and write M as a byte string of length k .
3. Check the formatting:
 - (a) First byte is 00.
 - (b) Second byte is 01.
 - (c) Consecutive FF bytes, followed by 00 byte.
4. From the next 15 bytes, get the hash name; say $H = \text{SHA-1}$.
5. Let $h = \text{next 20 bytes}$. **Check that there are no bytes to the right of h .**
6. Compute $h' = H(m)$.
7. Accept iff $h = h'$.

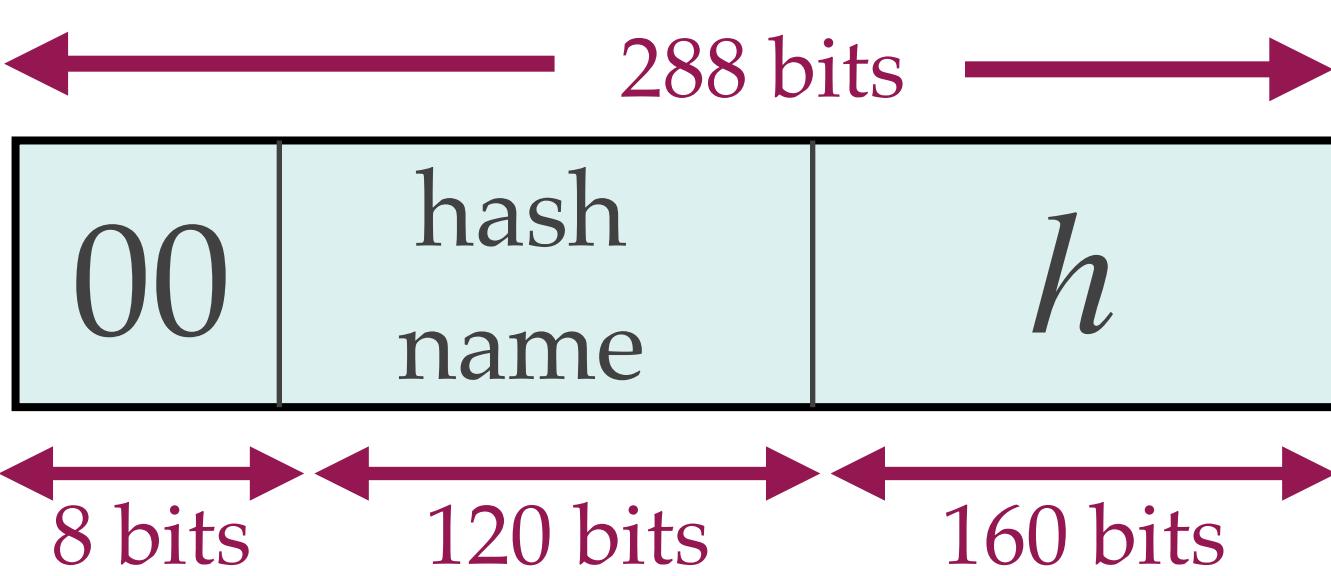
Bleichenbacher's attack: Breaking RSA "by hand" (1)

Assumptions:

1. The encryption exponent is $e = 3$: this is commonly used in practice.
2. The hash function is $H = \text{SHA-1}$: this is without loss of generality.
3. The RSA modulus n has bitlength 3072 (384 bytes): this is without much loss of generality.
4. The verifier doesn't check that there are no leftover bytes to the right of h : it turned out many RSA implementation omitted this step, including OpenSSL, SUN's JAVA library, Adobe Acrobat, Firefox,

Bleichenbacher's attack (2)

Attack:

1. Select arbitrary $m \in \{0,1\}^*$.
2. Compute $h = H(m)$.
3. Let D be the following 288-bit integer:

4. Let $N = 2^{288} - D$.
5. Check that $3 \mid N$; if $3 \nmid N$, then modify m slightly and go to step 2.
6. Let $s = 2^{1019} - 2^{34}N/3$.
7. Output (m, s) .

Bleichenbacher's attack (3)

Claim: The (faulty) verifier will accept (m, s) .

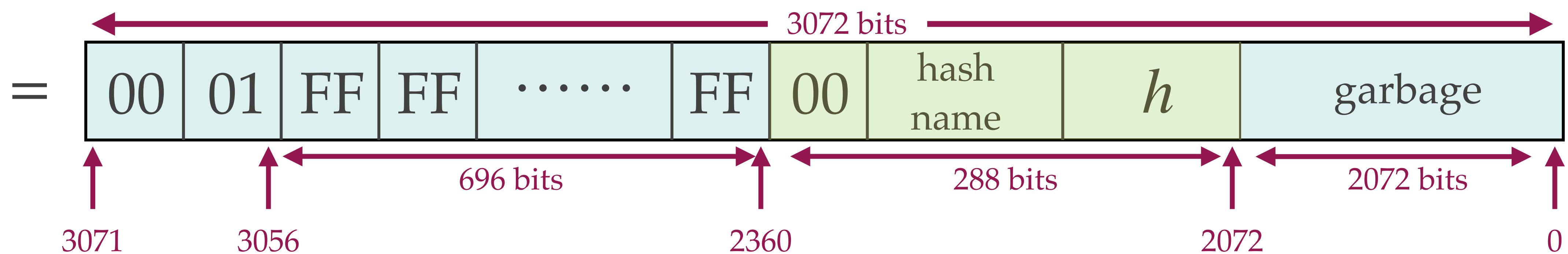
Proof: The verifier computes:

$$\begin{aligned} M &= s^e \bmod n = (2^{1019} - 2^{34}N/3)^3 \bmod n \\ &= 2^{3057} - 2^{2072}N + 2^{1087}N^2/3 - (2^{34}N/3)^3 \bmod n \\ &= 2^{3057} - 2^{2072}(2^{288} - D) + \text{garbage} \bmod n \\ &= 2^{2360}(2^{697} - 1) + 2^{2072}D + \text{garbage} \end{aligned}$$

$$\text{garbage} = 2^{1087}N^2/3 - (2^{34}N/3)^3$$

garbage is ≥ 0 and $< 2^{2072}$

$\bmod n$ is not needed since the integer on the right is less than 2^{3072}



So, the verifier extracts h , checks that $h = H(m)$, and accepts (m, s) . \square