RSA

/

©Alfred Menezes

cryptography101.ca

http://cryptography101.ca

V7 outline

+ V7a: Basic RS5A

+ V7b: Integer factorization

+ V7c: RSA encryption

+ V7d: R5A signatures

+ VZe: PKCS #1 v1.5 R5A signatures

Crypto 101:

7. RSA 248 Building Blocks

© Alfred Menezes

V/a
Basic RSA

RSA

CRYPTO 101: Building Blocks

©Alfred Menezes
cryptography101.ca

http://cryptography101.ca

RSA

+ Invented by Ron Rivest, Adi Shamir and Len Adleman in 1977.

+ R5A is used for public-key encryption and signatures.

A Method for Obtaining

Digital Signatures and Public-
Key Cryptosystems

N

Ron Rivest Adi Shamir Len Adleman R. L. Rivest, A. Shamir, and L. Adleman
@@®® CCBY-SA 4.0 Erik Tews @@®® CCBY-SA 3.0
@®® CCBY-SA3.0

Crypto 101:

7. RSA 250 Building Blocks

© Alfred Menezes

RSA key generation

Each entity A does the following:

1. Randomly select two large, distinct primes p and g of the same bitlength. l

2. Computen =pgand ¢ = ¢p(n) =(p —1)(g —1).
(n is called the RSA modulus) I

3. Select arbitrary integere, 1 < e < ¢, with gcd(e, @) = 1.
(e is called the encryption exponent)

4. Compute the integerd, 1 < d < ¢, with ed = 1 (mod ¢).
(d = e mod ¢ is called the decryption exponent) I

5. A’s public key is (n, €); her private key is d.

Crypto 101:
7. RSA 251 Building Blocks © Alfred Menezes

7. RSA

| 2. Represent the message as an integer m € [0,n — 1].

Basic RSA public-key encryption scheme

R

RSA encryption: To encrypt a message for A, B does the following:

1. Obtain an authenticated copy of A’s public key (7, e).

3. Compute the ciphertext c = m° mod n. '

4. Send c to A.

RSA decryption: To decrypt ¢, A does the following:

1. Compute m = ¢ mod n.

Crypto 101:

252 Building Blocks

© Alfred Menezes

7. RSA

Alice does the following:
1.

2.

. Selects e = 631 satisfying gcd(631,792) = 1.

. Alice’s public key is (n = 851, e = 631); her private key is d = 487.

Toy example: RSA key generation

Selects primes p = 23 and g = 37.

Computes n = pg = 851
and p(n)=(p—1)(g—1) =792.

Solves 631d = 1 (mod 792) to get d = — 305 = 487 (mod 792), and so
sets d = 4877.

Crypto 101:

253 Building Blocks

© Alfred Menezes

Toy example: RSA encryption

To encrypt a plaintext m = 13 for Alice, Bob does:

1. Obtains Alice’s public key (n = 851, e = 631).

2. Computes ¢ = 13°! mod 851 using repeated square-and-multiply:
(a) Write e = 631 inbinary: e =2"4+204+2> 4244+ 22421 420

(b) Compute successive squaring (i, m? mod n) of m = 13 modulo n:
(0,13), (1,169), (2,478), (3,416), (4,303), (5,752), (6,440), (7,423), (8,219), (9,305).

|

(c) Multiply together the squares m? for which the ith bit of the binary representation
of 631is1: 13%°! =305-440-752-303-478 - 169 - 13 = 616 (mod 851).

| 3. Bob sends the ciphertext ¢ = 616 to Alice.

To decrypt ¢ = 616, Alice uses her private key d = 487 to compute m = 616*°” mod 851.
| She gets m = 13.

Crypto 101:
Building Blocks

7. RSA 254 © Alfred Menezes

RSA works

d

Theorem: Forallm € [0,n — 1], if c = m® mod n, then m = ¢* mod n.

Proof: We'll prove that m®® = m (mod n) for allm € [0,n — 1].

+ Sinceed =1 (mod ¢), wecanwriteed =1+ k¢p =1+ k(p—1)(g—1) forsomek € Z.
Sinceed > land (p—1)(g—1) > 1, we have k > 1.

ed_

+ We'll now prove that m m (mod p).

+ Suppose first that p divides m. Then m = 0 (mod p), so m*? = 0°) = 0 (mod p).
Thus, m® = m (mod p).

+ Suppose now that p does not divide m. By Fermat’s Little Theorem, we have m”~! = 1 (mod p).

Raising both sides to the power k(g — 1), and then multiplying by m, gives
m 1 P=Da=D =y (mod p). Thus, m®? = m (mod p).

+ So, we conclude that m®® = m (mod p) for allm € [0,n — 1].

m = m (mod q). Since p and g both divide m®® — m, and since p and g are distinct

¢d _ m. Thus, m* = m (mod n).

+ Similarly, m

primes, we can conclude that pg divides m

Crypto 101:

7. RSA 299 Building Blocks

© Alfred Menezes

1.

2.

7. RSA

3.

Basic RSA signature scheme

RSA signature generation: To sign a message m € {0,1}*, A does the following:
Compute M = H(m), where H is a hash function.

Compute the signature s = M 4 mod n.

A’s signed message is (m, s).

RSA signature verification: To verify (m, s), B does the following: I

1. Obtain an authenticated copy of A’s public key (, e).

2. Compute M = H(m).
3. Compute M’ = s° mod n. I
4. Accept (m,s) if and only if M = M.

Crypto 101:

256 Building Blocks

© Alfred Menezes

V7b
Integer factorization

RSA

CRYPTO 101: Building Blocks

©Alfred Menezes
cryptography101.ca

http://cryptography101.ca

Big-O and little-o notation

Let f(n) and g(n) be functions from the positive integers to the positive real
numbers.

+ Big-O notation: We write f(n) = O(g(n)) if there exists a positive constant ¢
and a positive integer n, such that f(n) < cg(n) for all n > n,,

+ Example: 3n° + 4n° + 79 = O(n”).

fin) _

| .
+ Little-o notation: We write f(n) = o(g(n)) if Iim = 0.
n—co g(1) I
|
+ Example: — = o(1).
n
7. RSA 258 Crypto 101: © Alfred Menezes

Building Blocks

Measures of running time /\),

Polynomial-time algorithm: One whose worst-case running time is of the form ‘ B
O(n°), where n is the input size and c is a constant. |

Exponential-time algorithm: One whose worst-case running time is not of the form
O(n®) for any constant c. I

+ In this course, fully exponential-time functions are of the form 2", where c is a

constant; example: 02",

+ Subexponential-time algorithm: One whose worst-case running time function is

of the form 2°"” and not of the form O(n®) for any constant ¢; example: 0(2\/5).

Roughly speaking, “polynomial-time = efficient”, “fully exponential-time = terribly
inefficient”, and “subexponential-time = inefficient, but not terribly so”.

Crypto 101:

7. RSA 259 Building Blocks

© Alfred Menezes

Example: Trial division

+ Consider the following algorithm (trial division) for factoring an RSA
modulus n.

+ Trial divide n by the primes 2,3,5,7,11,..., L\/EJ .If any of these, say Z,
divides n, then stop and output the factor £ of n.

+ The running time of this method is at most \/E trial divisions, which is
O(/n).

+ Question: Is this a polynomial-time algorithm for factoring RSA moduli?

Crypto 101:

7. RSA 2 Building Blocks

© Alfred Menezes

Subexponential time

+ Let A be an algorithm whose input is an integer .
The input size is O(log n).

+ If the expected running time of A is of the form

Lla,cl=0 (exp((c + o(1))(log,n)“(log, log, n)l_“)),
where c is a positive constant, and « is a constant satisfying 0 < a < 1,
then A is a subexponential-time algorithm.

+ Note: If & = 0, then L [0,c] = O((log n)*t°V), which is polytime.

+ Note: If a = 1, then L [1,c] = O(n“t°Y), which is fully exponential time.

Crypto 101:

7. RSA 261 Building Blocks

© Alfred Menezes

Special-purpose factoring algorithms

+ Examples: Trial division, Pollard’s p — 1 algorithm, Pollard’s p
algorithm, elliptic curve factoring method, special number field sieve.

+ These algorithms are only efficient if the number n being factored has a
special form, e.g., n has a prime factor p that is relatively small, or p — 1
has only small prime factors.

+ To maximize resistance to these factoring attacks on RSA moduli, one
should select the RSA primes p and g at random and of the same
bitlength.

Crypto 101:

7. RSA 262 Building Blocks

© Alfred Menezes

General-purpose tactoring algorithms

+ These are factoring algorithms whose running times do not depend on
any properties of the number being factored (other than their size).

+ There have been two major developments in the history of factoring:

1. (1982) Quadratic sieve factoring algorithm (QS)
Running time: L [1/2,1].

2. (1990) Number field sieve factoring algorithm (NFS)
Running time: L [1/3,1.923].

Recall: L |a,c] = O (exp((c + o(1))(log,n)“(log, log, n)l_“)).

Crypto 101:

7. RSA sk Building Blocks

© Alfred Menezes

History of factoring

Year ~ Number Bitlength Method Notes

1903 167 _ 1 67 Naive Francis Cole (3 years of Sundays)

1988 ~ 1010 332 QS 100’s of computers around the world
IPPZEN RSA-129 425 QS 1600 computers around the world; 8 months
IPPPAEN RSA-155 512 NFS 300 workstations + Cray; 5 months
2005 RSA-200 663 NES

2009 RSA-768 768 NES 2000 core years

2019 RS5A-240 795 NFS 900 core years

2020 R5A-250 829 NFS 2700 core years

RSA Factoring Challenge : en.wikipedia.org/wiki/RSA_Factoring Challenge

Crypto 101:

7. RSA 264 Building Blocks

© Alfred Menezes

http://en.wikipedia.org/wiki/RSA_Factoring_Challenge

RSA-250

The largest “hard” number factored to date is RSA-250 (250 decimal digits, 829
bits), which was factored on February 28, 2020.

2140324650240744961264423072839333563008614715144755017797754920881418023
4471401366433455190958046796109928518724709145876873962619215573630474547
7052080511905649310668769159001975940569345745223058932597669747168173806
9364894699871578494975937497937
6413528947707158027879019017057738908482501474294344720811685963202453234
463023862359875266834770877661925585694639798853367

X
3337202759497815655622601060535511422794076034476755466678452098702384172
92100370802574486732968818775657189862583036932062711

Crypto 101:

7. RSA e Building Blocks

© Alfred Menezes

RSA-1024

The next interesting factoring challenge is RSA-1024 (1024 bits, 309 decimal
digits):

135066410865995223349603216273305969938881475605667027524485143351
526510604859533833940287150571909441798207282164471551373630419703
964191743046496589274256239341020864333202110372958725762358509643
110564073501508187510676594629205563685529475213500852879416377328
533906109750544334999811150056977236890927563

Crypto 101:

7. RSA 266 Building Blocks © Alfred Menezes

7. RSA

Security

(in bits)

80

Equivalent security levels

SKIPJACK

Triple-DES

AES small

AES medium

AES large

Hash
function

(SHA-1)

SHA-224

SHA-256

SHA-384

SHA-512

RSA
log, n

1024

2048

5072

7680

15360

267

Recall that a cryptographic scheme
has a security level of £ bits if the
fastest attack known on the scheme
takes approximately 2 operations.

Crypto 101:
Building Blocks

© Alfred Menezes

Summary

+ Factoring is believed to be a hard problem. However, we have no proof or theoretical
evidence that factoring is indeed hard.

+ In fact, factoring is known to be easy on a quantum computer.
+ Shor’s algorithm (1994) can factor n in O((log 1n)?) operations.

+ The largest number factored with Shor’s algorithm is the
number 21.

+ The big open question is whether large-scale quantum
computers can ever be built.

+ 512-bit RSA is considered insecure today.
+ 1024-bit RSA is considered risky, but still deployed (in legacy applications).
+ Most applications have moved to 2048-bit and 3072-bit RSA.

Crypto 101:

7. RSA 2 Building Blocks

© Alfred Menezes

V/7/c
RSA encryption

RSA

CRYPTO 101: Building Blocks

©Alfred Menezes
cryptography101.ca

http://cryptography101.ca

Security of RSA encryption

+ Security of RSA key generation. If an adversary can factor n, she can compute d
from (n, e). It has been proven that any efficient method for computing d from
(n, e) is equivalent to factoring n.

+ Security of Basic RSA encryption. A basic notion of security is that it should be
computationally infeasible to compute m from c. This is known as the RSA

problem.

+ RSA Problem (RSAP): Given an RSA public key (n, ¢) and ¢ = m° mod n
(Where m € [0,n — 1]), compute m.

+ The only effective method known for solving RSAP is to factor n (and
thereafter compute d and then m). Henceforth, we shall assume that RSAP is
intractable.

Crypto 101:

7. RSA 270 Building Blocks

© Alfred Menezes

Dictionary attack on Basic RSA encryption

+ Dictionary attack. Suppose that the plaintext m is chosen from a relatively
small (and known) set ./ of messages. Then, given a target ciphertext c, the
adversary can encrypt each m € until c is obtained.

+ Countermeasure: Append a randomly selected 128-bit string (called a salt)
to m prior to encryption. Note that m is now encrypted to one of 2%
possible ciphertexts, so a dictionary attack is infeasible.

Crypto 101:
7. RSA 271 Building Blocks © Alfred Menezes

Chosen-ciphertext attack on Basic RSA encryption

Suppose that the adversary E has a target ciphertext ¢ that was encrypted
for A. Suppose also that E can induce A to decrypt any ciphertext for E,
except for c itself. (We say that E has a decryption oracle.) Then E can
decrypt c as follows:

1. Select arbitrary x € [2,n — 1] with gcd(x, n) =1.

2. Compute ¢ = cx® mod n, where (n, e) is A’s public key.
(Note that ¢ # ¢, unless gcd(c,n) # 1.)

3. Obtain the decryption m of ¢ from the decryption oracle.
(Note that 111 = ¢4 = (cx9)? = ¢%x% = mx (mod n).)

—1

4. Compute m = mx~" mod n.

Crypto 101:

7. RSA 272 Building Blocks

© Alfred Menezes

Countermeasure to the chosen-ciphertext attack

Countermeasure: Add some prescribed formatting to m prior to
encryption. After decrypting the ciphertext ¢, if the plaintext is not
properly formatted, then A rejects ¢ (and so the decryption oracle
does not return a plaintext).

Summary: RSA encryption should incorporate salting and formatting.

Crypto 101:

7. RSA 273 Building Blocks

© Alfred Menezes

Security definition @

&

e)
4
A LA
A B
- el -
e Y
\ 4

§

Definition: A public-key encryption scheme is secure if it is semantically '€
secure against chosen-ciphertext attack by a computationally bounded l
adversary.

s e -

To break a public-key encryption scheme, the adversary E has to accomplish the following:
1. Eis given the public key and a challenge ciphertext c.

2. E has a decryption oracle, to which she can present any ciphertexts for decryption except
for c itself.

3. After a feasible amount of computation, E should learn something about the plaintext m
that corresponds to ¢ (other than its length).

Crypto 101:

7. RSA 274 Building Blocks

© Alfred Menezes

RSA Optimal Asymmetric Encryption Padding (OAEP)

Encryption:
+ k = bitlength of n

[=P)5 =

[7] | k-2

£ — 256 + M & {O,l}”ﬂ —236 (plaintext)
T @

+ 1 Ep {0,112°° (salt)
s + G {0,1}*° — {0,1}"
G) s> + Gy: {0,1} — {0,1}%°

+ G, and G, are masking functions

m= |0 0°M @ G(r) |1 ® Gy(s) built from H = SHA256,

e.g., G(r) = HO.») | H(Lp) || H2.0) || -

c = m° mod n

Crypto 101:

7. RSA 275 Building Blocks

© Alfred Menezes

Decryption. To decrypt ¢, do the following:

d

1. Compute m = ¢“ mod n.

2. Parse m:

l] — —d— 256 =P

3. Compute r = G,(s) D 1.

4. Compute G((r) @ s =

<4 256 =P 4¢—— - 256 —P

5. If a = 0%°°, then output M = b;
else reject c.

7. RSA 276

RSA-OAEP (cont’d)

(Bellare & Rogaway).
Suppose that RSAP is
intractable. Suppose that
G, and G, are random l

Theorem. l

functions. Then RSA -

OAEP is a secure public-
key encryption scheme

Crypto 101:

Building Blocks © Alfred Menezes

Key encapsulation mechanisms

+ A key encapsulation mechanism (KEM) allows two parties to establish a
shared secret key, called a session key:.

+ A KEM is comprised of three algorithms:

+ Key generation: Each user, say Alice, uses this algorithm to generate an
encapsulation key ek (public key) and a decapsulation key dk (the
private key).

+ Encapsulation: Bob uses Alice’s encapsulation key ek to generate a
secret key k and ciphertext ¢, and sends c to Alice.

+ Decapsulation: Alice uses her decapsulation key dk to recover k from
the ciphertext c.

Crypto 101:

7. RSA 277 Building Blocks

© Alfred Menezes

transport a session key k for A, B does

I Key encapsulation: To select and

the following:

encapsulation key (n, e).

2. Selectr €, |0,n — 1].

3. Compute ¢ = r° mod n and
k = KDEF(r).

4. Send c to A.

1. Obtain an authenticated copy of A’s

Key generation:

1. A’s (public) encapsulation key is
ek = (n, e)

2. A’s (private) decapsulation key is
dk = d.

Key decapsulation: A processes c as
follows:

4 mod n and

1. Computer =c
k = KDE(r)

2. The session key is k.

Crypto 101:
Building Blocks

278

© Alfred Menezes

V7d
RSA signatures

RSA

CRYPTO 101: Building Blocks

©Alfred Menezes
cryptography101.ca

http://cryptography101.ca

Basic RSA signature scheme

Key generation: Each entity A does the Signature generation: To sign a message m € {0,1}*, A
following: does the following:
1. Randomly select two large distinct 1. Compute M = H(m), where H is a hash function.

j ,q of th bitlength.
primes p, q o S RIS RHELE 0 . Compute S = Md mod n (SO §¢ = Med =M (mOd n))

2. Compute n = pg and
¢=(p—-1Dg-1).

3. Select arbitrary e, 1 < e < ¢, such
that gcd(e, @) = 1.

3. A’s signatureonmiss.

Signature verification: To verify A’s signed message (m, s), B

does the following:

4. Computed, 1 < d < ¢, such that

1. Obtain an authentic copy of A’s public key (n, e).
ed =1 (mod ¢).

2. Compute M = H(m). l

5. A’s public key is (n, €); A’s private 3. Compute M’ = s¢ mod n.

key is d. 4. Accepts (m,s) if and only it M = M.

Crypto 101:
7. RSA 280 Building Blocks © Alfred Menezes

Security of the basic RSA signature scheme

Hardness of RSAP: We require that RSAP be intractable, since
otherwise E could forge A’s signature as follows: l

1. Select arbitrary m.

2. Compute M = H(m).
l 3. Solve s = M (mod n) for s. l

4. Then s is A’s signature on m.

Crypto 101:

7. RSA 281 Building Blocks

© Alfred Menezes

Preimage resistance: If H is not PR, and the range of H is
1. Selects €3 [0,n — 1] and compute M = s° mod n.

2. Find m such that H(m) = M .

3. Then s is A’s signature on m.

2nd preimage resistance: If H is not 2PR, then
signatures can be forged as follows: I

1. Suppose that (m, s) is a valid signed

message.

2. Find an m’, m’ # m, such that H(m') = H(m) . l

3. Then sis A’s signature on m’.

7. RSA 282

Security properties of the hash function

[0, n — 1], then signatures can be forged as follows:

Collision resistance: If H is not CR, then
signatures can be forged as follows: I

1. Select m;, m, with m; # m, and

2. Induce A to sign m,: s = H(m;)* mod n.

3. Then s is A’s signature on m,.

Crypto 101:
Building Blocks

© Alfred Menezes

The adversary

Goals of the adversary: Attack model: I

1. Total break: E recovers A’s I

private key, or a method for
systematically forging A’s

1. Key-only attack: The only
information E has is A’s public key.

2. Known-message attack: £ knows I

signatures. I

2. Existential forgery: E forges some message-signature pairs.

A’s signature for a single 3

. Chosen-message attack: E has access

might not have any control
over the content or structure of
this message.

message of £’s choosing; E
l obtain A’s signatures on some

l to a signing oracle which it can use to

messages of its choosing.

Crypto 101:
7. RSA 283 Building Blocks © Alfred Menezes

Y.

Security definition @
y
Definition: A signature scheme is secure if it is existentially unforgeable by l

a computationally bounded adversary who launches a chosen-message
attack.

\

+ Note: The adversary has access to a signing oracle. Her goal is to compute
a single valid message-signature pair for any message (of the adversary’s
choosing) that was not previously given to the signing oracle.

+ Question: Is the basic RSA signature scheme secure?

+ Answer: No, if H is SHA-256 (details omitted); Yes, if H is “full domain”.

Crypto 101:

7. RSA 284 Building Blocks © Alfred Menezes

Full Domain Hash RSA (RSA-FDH)

+ Same as the basic RSA signature scheme, except that the hash function is
H: {0,1}* - [0,n — 1] where n is the RSA modulus.

+ In practice, one could define
H(m) = SHA-256(1,m) || SHA-256(2,m) || --- || trunc(SHA-256(¢, m)).

Theorem (Bellare & Rogaway, 1996): If RSAP is intractable and H is a
random function, then RSA-FDH is a secure signature scheme.

Crypto 101:

7. RSA 285 Building Blocks

© Alfred Menezes

VZe
PKCS #1 v1.5 RSA signatures

RSA

CRYPTO 101: Building Blocks

©Alfred Menezes
cryptography101.ca

http://cryptography101.ca

PKCS #1 v1.5 RSA signatures (1993)

PKCS = Public Key Cryptographic Standards

Signature generation: To sign m € {0,1}%*, Alice does:
1. Compute h = H(m), where H is a hash function from an approved list.

2. Format h, where k = byte length of n (e.g. k = 384):
+————— k bytes —— >

|

M= |00|01|FF|FE| - FE| 00| ™" | &
D B EE—
3. Compute s = M mod n. 15 bytes 20 bytes
| (for SHA-1)

4. Send (m, s).

Crypto 101:

7. RSA 287 Building Blocks

© Alfred Menezes

Signature verification. Bob does:
1. Obtain an authentic copy of Alice’s public key (n, e).

2. Compute M = s° mod n, and write M as a byte string of length k.

PKCS #1 v1.5 RSA signature verification

3. Check the formatting: P e -
(a) First byte is 00. |M= 00| 01| FF|FE| - gl ses]
(b) Second byte is 01. 15bytes 20 bytes

(c) Consecutive FF bytes, followed by 00 byte. |

From the next 15 bytes, get the hash name; say H = SHA-1.

Let h = next 20 bytes.|Check that there are no bytes to the right of 4.

Compute i’ = H(m).

N & Uk

Acceptift h = h'.

7. RSA 288

Crypto 101:
Building Blocks

© Alfred Menezes

Bleichenbacher’s attack: Breaking RSA “by hand” (1)

Assumptions:
1. The encryption exponent is e = 3: this is commonly used in practice.
2. The hash function is H = SHA-1: this is without loss of generality.

3. The RSA modulus n has bitlength 3072 (384 bytes): this is without much
loss of generality:.

4. The verifier doesn’t check that there are no leftover bytes to the right of A:

it turned out many RSA implementation omitted this step, including
OpenSSL, SUN’s JAVA library, Adobe Acrobat, Firefox,

Crypto 101:

7. RSA 289 Building Blocks

© Alfred Menezes

Bleichenbacher’s attack (2)

Attack:

1.

7. RSA

N S 0k » D

Select arbitrary m € {0,1 }*.

Compute h = H(m).

Let D be the following 288-bit integer:

Let N = 2°%° — D.

G 288 hits =——m—m—p

name
4+—>
8 bits 120 bits 160 bits

Check that 3 | NV, if 3 + N, then modify m slightly and to to step 2.

Lets = 21019 _234N/3

Output (m, s).

290

Crypto 101:
Building Blocks

© Alfred Menezes

Bleichenbacher’s attack (3)

Claim: The (faulty) verifier will accept (m, s).

Proof: The verifier computes: garbage = 2'%°'N?/3 — (27*N/3)?
M = s¢ mod n = (21919 — 234N/3)° mod n

= 2907 22072 4 21987N2/3 — (2°*N/3)? mod n . . .
mod 7 is not needed since the integer

— 23057 — 22072(2288 — D) + garbage nxd) on the right is less than 3072
= 2299297 _ 1) + 2°97°D + garbage

22072

garbage is > 0 and <

3072 Dits m—

hash
= | 00| 01| FF|FE| ==+ FE| 00| ™" | & garbage
T T 696 bits T 288 bits T 2072 bits T
3071 3056 2360 2072 0

So, the verifier extracts h, checks that 4 = H(m), and accepts (m, s).

Crypto 101:

7. RSA 291 Building Blocks

© Alfred Menezes

