

Error-Correcting Codes: Assignment #1

Alfred Menezes (cryptography101.ca)

NOTE: You can attempt a question after watching all video lectures up to and including the one listed in the question title.

1. Distance (V1a)

If x_1 and x_2 are binary n -tuples, then $x_1 + x_2$ denotes the bitwise modulo 2 sum of x_1 and x_2 . For example, $000111 + 011011 = 011100$.

- Let C be a binary $[n, M]$ -code with distance d . Let $x \in \{0, 1\}^n$, and let $C+x = \{c+x : c \in C\}$. Prove that $C+x$ is also a binary $[n, M]$ -code with distance d .
- Construct a binary $[10, 3]$ -code with distance 7, or prove that no such code exists.
- Construct a binary $[11, 4]$ -code with distance 7, or prove that no such code exists.

2. IMLD vs. MED (V1b)

Consider the binary code $C = \{c_1 = 00111, c_2 = 11010, c_3 = 10101\}$. Suppose that $P(c_1) = 0.1$, $P(c_2) = 0.25$, and $P(c_3) = 0.65$, where $P(c_i)$ denotes the probability that c_i is sent. Suppose that a binary symmetric channel with symbol error probability p is being used, and $r = 01000$ is received.

- What is the distance of C ?
- Suppose that $p = 0.1$. Decode r using IMLD.
- Suppose that $p = 0.1$. Decode r using MED.
- Suppose that $p = 0.4$. Decode r using IMLD.
- Suppose that $p = 0.4$. Decode r using MED.

3. Converting an error-detecting code to an error-correcting code (V1c)

Suppose that source messages are binary strings of length st , where $s, t \geq 2$. A source message is mapped to a codeword as follows. Arrange the message bits in an $s \times t$ array. Append parity bits at the end of each row, and then at the end of each column, so the resulting codeword is an $(s+1) \times (t+1)$ array. Let C be the set of all such codewords.

- Prove that the last row of each codeword has even parity.
- Fix an $e \geq 1$. Describe an efficient decoding algorithm that always makes the correct decision if e or fewer bits in a codeword are flipped during transmission. (Justify the correctness of your algorithm.)

4. Bounds on the number of codewords (V1c)

Let $q \geq 2$, $n \geq 2$ and d be positive integers with $d \leq n$. Define $T_q(n, d)$ to be the largest integer M such that there exists an $[n, M, d]$ -code over an alphabet A of size q . Prove the following statements:

- $T_q(n, 1) = q^n$.
- $T_2(n, 2) = 2^{n-1}$.
- Prove that $T_q(n, d) \leq q^n / (\sum_{i=0}^e \binom{n}{i} (q-1)^i)$, where $e = \lfloor \frac{d-1}{2} \rfloor$.
Hint: Consider the number of words in a sphere of radius e centered at a codeword.
- Prove that $T_2(8, 5) \leq 6$.
- Prove that $T_2(8, 5) \geq 4$.

Note: An $[n, M, d]$ -code over an alphabet A is an $[n, M]$ -code over A with distance d .