

Error-Correcting Codes: Solutions #1

Alfred Menezes (cryptography101.ca)

1. (a) We need to prove that $d(C + x) = d(C)$. Let x^i denote the i^{th} coordinate of a word x . Let $c_1, c_2 \in C$. If $c_1^i = c_2^i$, then clearly $(c_1 + x)^i = (c_2 + x)^i$. Similarly, if $c_1^i \neq c_2^i$, then $(c_1 + x)^i \neq (c_2 + x)^i$. Hence $d(c_1, c_2) = d(c_1 + x, c_2 + x)$. It follows that $d(C) = d(C + x)$.

(b) There is no binary $[10, 3]$ -code with distance 7.

Proof: Suppose $C = \{c_1, c_2, c_3\}$ is such a code with $d(c_1, c_2) = 7$. Without loss of generality, suppose that c_1 and c_2 differ in the first seven positions and are equal in the remaining three positions. Consider $C' = C + c_1$, which by (a) is a binary $[10, 3]$ -code with distance 7. The codewords in C' are $c'_1 = c_1 + c_1 = 0000000000$, $c'_2 = c_2 + c_1 = 1111111000$ and $c'_3 = c_3 + c_1$. Now, c'_3 must have at least seven 1's since $d(c'_1, c'_3) \geq 7$. But then c'_2 and c'_3 can differ in at most 6 positions, namely the positions in which either c'_2 or c'_3 has a 0 bit, which contradicts $d(c'_2, c'_3) \geq 7$.

(c) The following binary code has parameters $n = 11$, $M = 4$, $d = 7$:

$$C = \{00000000000, 11111110000, 00001111111, 11110001111\}.$$

2. (a) $d(C) = 2$.

(b) Since $d(r, c_1) = 4$, $d(r, c_2) = 2$ and $d(r, c_3) = 4$, IMLD decodes r to c_2 .

$$P(c_1|r) = p^4(1-p)P(c_1)/P(r) = 9/(10^6 P(r)).$$

$$P(c_2|r) = p^2(1-p)^3P(c_2)/P(r) = 1822.5/(10^6 P(r)).$$

$$P(c_3|r) = p^4(1-p)P(c_3)/P(r) = 58.5/(10^6 P(r)).$$

Hence MED decodes r to c_2 .

(d) As in (a), IMLD decodes r to c_2 . (IMLD does not take into account the source message probabilities $P(c_i)$, nor the symbol error probability p .)

$$(e) P(c_1|r) = 153.6/(10^5 P(r)), P(c_2|r) = 864/(10^5 P(r)), P(c_3|r) = 998.4/(10^5 P(r)).$$

Hence MED decodes r to c_3 .

3. (a) By construction, each of the $t + 1$ columns of a codeword has even parity. Thus, the total number of 1's in a codeword is even. Also by construction, each of the first s rows of a codeword has even parity. The number of 1's in the last row is $x - y$, where x is the total number of 1's in the codeword, and y is the the number of 1's in the first s rows. Since both x and y are even, $x - y$ is also even. Thus, the last row has even parity.

(b) Let c be a transmitted codeword, and let r be the received word.

Decoding algorithm. Arrange the bits of r in an $(s + 1) \times (t + 1)$ array. If all the rows and columns of the array have even parity, then accept r . If exactly one row (say row i) and exactly one column (say column j) of the array has odd parity, then flip the bit in the (i, j) position of r . Otherwise, reject r .

Claim: The decoding algorithm always make the correct decision if 0 or 1 errors are introduced during transmission (so $e = 1$).

Proof. If no errors are introduced during transmission, then all the rows and columns of r have even parity and so r is accepted. If a single error is introduced during transmission, say in the (i, j) position, then the i^{th} row and j^{th} column of r have odd parity, whereas the other rows and columns have even parity. Thus, the decoding algorithm will correctly flip the bit in the (i, j) position.

Remark: As an (optional) exercise, show that C has distance 4. Thus, C is a 1-error correcting code but not a 2-error correcting code. Also, C is a 3-error detecting code but not a 4-error detecting code. Finally, C can be used to correct 1 error while *simultaneously* detecting 2 errors.

4. (a) The code consisting of all the n -tuples over \mathbb{Z}_q has distance $d = 1$; hence $T_q(n, 1) \geq q^n$. Also, since there are q^n n -tuples in total, the number of codewords in any code of length n over \mathbb{Z}_q is at most q^n whence $T_q(n, 1) \leq q^n$. Thus, $T_q(n, 1) = q^n$.

(b) The binary words of length n can be partitioned into 2^{n-1} pairs $(0x, 1x)$, where x ranges over all binary words of length $n - 1$. Let C be a binary code of length n and distance 2. Since $d(0x, 1x) = 1$, at most one word in each pair $(0x, 1x)$ can belong to C , whence $|C| \leq 2^{n-1}$. Thus, $T_2(n, 2) \leq 2^{n-1}$.

Now, $0x$ and $1x$ have opposite parity, i.e., one word has even parity and the other word has odd parity. Let C be the length- n code consisting of the even parity words from each pair $(0x, 1x)$. We have $00 \cdots 0 \in C$ and $110 \cdots 0 \in C$, so $d(C) \leq 2$. Suppose now that c_1 and c_2 are two codewords in C with $d(c_1, c_2) = 1$. Without loss of generality, we can assume that c_1 and c_2 differ in the first coordinate. But then the pair of codewords c_1 and c_2 are of the form $(0x, 1x)$, one of which has odd parity. We conclude that $d(c_1, c_2) \geq 2$ for all distinct codewords c_1 and c_2 , and so $d(C) \geq 2$. Hence, $d(C) = 2$ and $T_2(n, 2) \geq 2^{n-1}$.

We conclude that $T_2(n, 2) = 2^{n-1}$.

(c) Let $c \in C$. The number of words at distance exactly i from c is $\binom{n}{i}(q-1)^i$. Hence, the number of words in the sphere of radius e about c is $\sum_{i=0}^e \binom{n}{i}(q-1)^i$. Now, C has distance d , and hence the spheres of radius $e = \lfloor \frac{d-1}{2} \rfloor$ about codewords are pairwise disjoint. Hence, the total number of words in all spheres about codewords is $M \sum_{i=0}^e \binom{n}{i}(q-1)^i$. Finally, since the total number of words is q^n , it follows that $M \sum_{i=0}^e \binom{n}{i}(q-1)^i \leq q^n$.

(d) Substituting $q = 2$, $n = 8$, $e = 2$ into the inequality from (a) gives $M(1 + 8 + 28) \leq 2^8$, so $M \leq 256/37 \approx 6.92$. Since M is an integer, we must have $M \leq 6$. Hence, $T_2(8, 5) \leq 6$.

(e) $C = \{00000000, 11111000, 00011111, 11100111\}$ is an $[8, 4]$ -binary code of distance 5, which shows that $T_2(8, 5) \geq 4$.

Remark: As an (optional and challenging) exercise, show that $T_2(8, 5) = 4$.