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1.

2.

G1 is a k1 X np matrix of rank ki, and Gg is a kg X ng matrix of rank ky. Hence G is a (k1 +
k2) X (n1 + n2) matrix. One can perform row operations on the first k; rows of G to convert G
to reduced echelon form Fj, and then perform row operations on the last ks rows of the resulting
matrix to convert G to reduced echelon form FEs. The resulting matrix
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and has k1 + ko leading 1’s, so its rank is k1 + ko. Since G is row equivalent to F, the rank of G is
also k1 + ko. Hence C is a linear code of length n = ny + ny and dimension k = ki + ko.

Since the codewords in C' are the linear combinations of rows of G, C can be described as the set
{(61,02) cc€Cq, € 02}.
Hence
d(C) = w(C)= min w((cy,c
© = w(@)= min, wl(ere)
= min Jw(cr) +w(c
(01,02)7&0{ (c1) + w(e2)}
= min <£111;£%w(01), gl;ér&tu(@))
= min (w(Cy),w(Cy))
= min(dl, dg).

Thus the distance of C' is d = min(dy, da).

(a) A parity-check matrix H for C is an (n — k) X n matrix every d — 1 columns of which are
linearly independent over GF(q). Hence the column rank of H is at least d — 1. Since the
column and row ranks of H are equal, H must have row rank at least d — 1. Finally, since H
has n — k rows, we must have d — 1 <n—k,andsod <n—k+ 1.

(b) Let H be a parity-check matrix for C, and let hy, ho, ..., h, denote the columns of H. Without
loss of generality, suppose that S = {1,2,...,d}. Now, since H has rank n — k and d =

n — k 4+ 1, the columns h1, hs, ..., hgy must be linearly dependent over F. Hence there exists
ai,as,...,aq € F, not all zero, such that a1hy + ashs + - -+ + aghgy = 0, from which it follows
that ¢ = (a1, ag,...,aq,0,...,0) is a nonzero codeword. Now, since C' has distance d, we must
have w(c) = d, and so ai,as,...,aq are all nonzero. Hence, the nonzero coordinate positions

of ¢ are precisely the elements of S.

(c) For each set S of d coordinate positions, let ¢ be a codeword whose nonzero coordinate positions
are precisely the elements of S. Then, for each nonzero A in F', Ac is also a codeword of weight
d whose nonzero coordinate positions are precisely the elements of S. Altogether this gives
(g —1)(})) codewords of weight d.
Finally, we need to show that there are no other weight-d codewords. Let c¢; and co be any
two weight-d codewords having the same set S of nonzero coordinate positions. Let A; be



the first nonzero component of c¢1, and let Ao be the first nonzero component of ¢o. Then
c =M te1 — Ay teg is a codeword of weight at most d — 1. Since C' has distance d, it must be
the case that ¢ = 0. Hence ¢; = A\ A5 102, and so ¢; and ¢y are scalar multiples of each other.
This shows that all weight-d codewords were accounted for in the previous paragraph.

n = 10.

H has rank 4 since columns 1, 7, 8 and 9 are linearly independent. Hence n — k = 4, and so
k =6.

Since the columns of H are nonzero and distinct, d(C') > 3. However, the sum of columns 1
and 2 of H' equals column 7 of H. Hence d(C) # 4. It follows that d(C) = 3.

There are 2"% = 2% = 16 cosets. Note that every vector of weight < [%51] = 1 must be a

coset leader. For the remaining 5 coset leaders, we choose arbitrary vectors of weight 2. Here
is one 1-1 correspondence between syndromes and coset leaders.

Coset leader | Syndrome || Coset leader | Syndrome
0000000000 0000 0000000100 0010
1000000000 1000 0000000010 0111
0100000000 1001 0000000001 1101
0010000000 1110 1010000000 0110
0001000000 1111 1000100000 1011
0000100000 0011 1000000001 0101
0000010000 1010 0100000001 0100
0000001000 0001 0010000100 1100

i. The syndrome of 1 is s; = Hr! = (0011)7. Hence e = (0000100000) and r; is decoded
to ¢; = (1010001010).

ii. The syndrome of 7 is s5 = Hrd = (0010)”. Hence e = (0000000100) and 75 is decoded
to ca = (0011001000).

Since the zero vector is a codeword in C' and has even weight, it is also in C’, and so C’
is non-empty. Let xz,y € C’. Then x +y € C since C is closed under addition. Also,
w(z +y) = w(x) + w(y) — 2¢ where ¢ is the number of coordinate positions in which = and y
are both 1. Since w(z) and w(y) are even, w(x + y) is also even, and hence x +y € C’. Thus,
(' is closed under addition.

IfzeC' then0-x =0€ C"and 1-2 = x € C’'. Hence, C’ is closed under scalar multiplication.
So, C’ is a vector subspace of C.

Let O’ be the vectors of odd weight in C, and let y € O’. Define f: C' — O' by f(z) =z +y.
Note that f(z) is indeed in O’ since x +y € C and w(z + y) = w(z) + w(y) — 2¢ where £
is the number of coordinate positions in which x and y are both even, whence w(x + y) is
odd. Now, f is injective since if f(z1) = f(z2), then 1 + y = z2 + y whence 1 = x2. Also,
f is surjective since if z € O, then z +y € C and w(z + y) is even (so z +y € C’) and
f(z+vy) = (24+y)+y = 2. Hence, f is a bijection, so |C’| = |O’|. Since |C'| +|0'| = |C|, it
follows that C'| = £|C|.

n' =n, and k' = k — 1 since |C'| = }|C| = 32k = 2~-1,

If d is even, then the nonzero codewords of weight d in C' are also in C’. Hence, w(C’) = d, so
d =d.

If d is odd, then the nonzero codewords of weight d in C are not in C’. Hence, the minimum



weight of a nonzero codeword in C’ is at least d + 1. Thus, w(C”") > d+ 1, whence d(C") is an
even number that is > d + 1.

5. (a) sy = [B|I12]rT = (1101 1001 0110)”, which has weight > 3. Since so differs in positions 3 and
5 from column 5 of B, the error vector is e; = (0000 1000 0000 0010 1000 0000). r; is decoded
to ¢; = (0011 0000 0000 0110 0100 1110).

(b) so = [B|I12]rd = (1001 0001 0000)”. Since w(sz) < 3, the error vector is ey = (0,s2). 7o is
decoded to cz = (0000 0000 0011 0110 1100 1001).

(c) s1 = [L12|B]rY = (0010 1000 0000)7. Since w(s1) < 3, the error vector is e3 = (s7,0). r3 is
decoded to ¢z = (1100 0000 0000 1001 0001 1101).

(d) sy = [l12|B]rl = (0110 0001 0110)7, which has weight > 3. Since s; differs in positions 1 and

4 from column 5 of B, the error vector is e4 = (1001 0000 0000 0000 1000 0000). 74 is decoded
to ¢4 = (0110 0000 0000 0011 0010 0111).



