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1. We will prove that the largest k is k = 4.
The zero vector, the 8 weight-one vectors, and the 7 weight-two vectors in the question, must belong
to distinct cosets of the code. Hence, since the number of cosets is 28−k, we have 28−k ≥ 16, whence
8− k ≥ 4 and k ≤ 4.
The following matrix H is a parity-check matrix for an (8, 4)-binary code C:

1 0 0 0 0 0 0 0
0 1 0 0 1 0 1 1
0 0 1 0 1 1 0 1
0 0 0 1 0 1 1 1

 .

The columns of H are nonzero and distinct, and hence d(C) ≥ 3. Also, the second and third
columns sum to the fifth column, so d(C) = 3. In addition, one can check that the syndromes of
the 7 weight-two vectors in the question are nonzero, distinct, and not equal to any of the columns
of H. Hence these 16 error vectors have unique syndromes. Thus, C is an (8, 4, 3)-binary code that
is capable of correcting the 16 error vectors using syndrome decoding.

2. A 1200-bit message will be divided into 60 20-bit pieces, and each piece will be encoded to a 30-
bit codeword. The message will be received and decoded correctly if all the 30-bit codewords are
correctly decoded, i.e., at most two errors are introduced in each of the 60 codewords that are
transmitted. This probability is(
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)60

.

This probability is 0.9728 for p = 1
200 , 0.8192 for p = 1

100 , and 0.2678 for p = 1
50 .

3. Since C is self-orthogonal, c · c = 0 for all codewords c ∈ C. Hence, all codewords in C have even
weight.

Let’s first show that C ′ ⊆ C⊥. Let x ∈ C ′. If x ∈ C, then x ∈ C⊥ since C ⊆ C⊥. If x = c + 1
where c ∈ C, then for all y ∈ C we have

x · y = (c + 1) · y = c · y + 1 · y = 0 + 0 = 0

since c ∈ C⊥ and y has even weight. Thus, C ′ ⊆ C⊥.

Now, since n is odd, 1 has odd weight whence 1 + c has odd weight for all c ∈ C. It follows that
C ∩C = ∅. Thus, |C ′| = |C|+ |C|. Let n = 2m + 1. Then, |C ′| = 2m + 2m = 2m+1. And, since C⊥

is an (n,m + 1)-binary code, we have C⊥ = 2m+1. Thus, since C ′ ⊆ C⊥ and |C ′| = |C⊥|, we can
conclude that C ′ = C⊥.

4. The factorization of x17 − 1 over Z2 is x17 − 1 = g1(x)g2(x)g3(x), where

g1(x) = 1 + x

g2(x) = 1 + x + x2 + x4 + x6 + x7 + x8

g3(x) = 1 + x3 + x4 + x5 + x8.



(a) The total number of cyclic spaces of V17(Z2) is 23 = 8.

(b) The possible canonical generators of cyclic subspaces of V17(Z2) are g1g2g3, g1g2, g2g3, g1g3,
g3, g2, g1, and 1. They generate cyclic subspaces of dimensions 0, 8, 1, 8, 9, 9, 16, and 17,
respectively. Thus the values of k, 1 ≤ k ≤ 17, for which a cyclic subspace of dimension k
exists are 0, 1, 8, 9, 16, and 17.

(c) There are no cyclic subspaces of dimension 4.

(d) g1g2 = x9 + x6 + x5 + x4 + x3 + 1 and g1g3 = x9 + x8 + x6 + x3 + x + 1 are the canonical
generators for cyclic subspaces of dimension 8.

5. We need to find the smallest positive integer n for which g(x) = 1 + x4 + x5 divides xn− 1 over Z2.
Now, the factorization of g(x) into irreducible polynomials over Z2 is g(x) = (x2+x+1)(x3+x+1).
From Table 3 on page 157 of the course textbook (this table is also posted on LEARN), we see that
the smallest n for which xn − 1 has both x2 + x + 1 and x3 + x + 1 as factors is n = 21. Thus, the
smallest n for which g(x) is the canonical generator for a binary cyclic code of length n is n = 21.

6. (a) The received word is decoded to (01011 00000 00001).

(b) The received word is decoded to (10001 00110 10111).


