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Introduction

+ In 2024, the US government’s National
Institute of Standards and Technology
(NIST) published a suite of standards for
quantum-safe key encapsulation
mechanisms (KEM) and signature
schemes.

+ These schemes are intended to replace RSA
and ECC, which succumb to quantum
attacks.

+ It's expected that Kyber (a KEM) and
Dilithium (a signature scheme) will see the

most deployment in the coming years.
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Course objectives

1. Detailed description of Kyber

+ Module-Lattice-based Key
Encapsulation Mechanism (ML-KEM)

+ FIPS 203
2. Detailed description of Dilithium

+ Module-Lattice-based Digital Signature
Algorithm (ML-DSA)

+ FIPS 204

3. Appreciate the many optimizations
introduced to facilitate fast implementations,
and to decrease key, ciphertext and signature
s1zes.
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Course outline

+ V1: Introduction

+ V2: The Kyber PKE and KEM
+ V3: The Dilithium signature scheme

+ V4: Number-Theoretic Transform (NTT)
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V1 outline

+ Vla: Post-quantum cryptography

+ V1b: Mathematical preliminaries
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V1a: Post-quantum cryptography

1. Quantum computers

2. The threat of quantum computers
(Shor and Grover)

3. PQC standardization
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(Quantum computers

+ Conceived by Yuri Manin (1980) and Richard Feynman (1981), quantum computers
are devices that use quantum-mechanical phenomena such as superposition,
interference, and entanglement to perform operations on data.

+ A qubit is the quantum analogue of a classical bit, and can be in two states at the
same time, each with a certain probability.

+ An n-qubit register can be in 2" states at the
same time, each with a certain probability.

+ When a function f: {0,1}" — {0,1}" is applied to an n-qubit register, it is
simultaneously evaluated at all 2" states.

+ However, when the n-qubit register is measured, it reverts to being in one of the 2"
states according to its underlying probability distribution.

+ S0, guantum computers are not “massively parallel machines.”
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T'he threat of quantum computers: Shor

The public-key systems used in practice are:
+ RSA: security is based on the hardness of integer factorization.
+ DL: security is based on the hardness of the discrete logarithm problem.

+ ECC: security is based on the hardness of the ECDLP.

Shor’s algorithm: In 1994, Peter Shor discovered a very
efficient (polytime) quantum algorithm for solving these
problems. So, all RSA, DL, and ECC implementations can be
totally broken by quantum computers.
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The threat of quantum computers: Grover

| Let ' : {O 1 }” {0,1 } be a function such that (i) F is efficiently
computable; and (ii) F(x) = 1 for exactly one input x € {0,1}".

Grover’s algorithm: In 1996, Lov Grover discovered a quantum algorithm
for finding the x € {0,1}" with F(x) = 1 in+4/2" evaluations of F.

Exhaustive key search: Consider AES with an £-bit key. Suppose that we have ¢t known plaintext-
ciphertext pairs (m,, c;), where ¢ is such that the expected number of false keys is very close to 0.

Define F : {0,1}¢ — {0,1) by F(k) = 1if AES(m;) = c¢; forall 1 <i < t;and F(k) = 0 otherwise.

2//2

Then Grover’s algorithm can find the secret key in quantum operations.

Thus, 256-bit AES keys should be used in order to achieve a 128-bit security level against quantum
attacks.
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When will quantum computers be built?

+ 1998: (Jones & Mosca) 2-qubit quantum computer

+ 2017: 50 qubits (IBM) tinyurl.com /IBMgc50

+ 2019: 53 qubits (Google) tinyurl.com/GoogleQC

+ 2021: 127 qubits (IBM) tinyurl.com /IBMqc127

+ 2022: 433 qubits (IBM) tinyurl.com /IBMqc433 , | ‘;f “ ; J{, {{!};i

+ Dec 2023: 1,121 qubits (IBM) tinyurl.com/IBMqc1121
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Fault-tolerant quantum computers?

+ A quantum computer that can factor a 2048-bit RSA modulus using Shor’s algorithm needs (at
least) 2048-qubit registers.

+ These qubits will have to be fault tolerant, i.e., error resistant.
+ The physical qubits that have been built so far are not (sufficiently) fault tolerant.

+ The largest number factored using Shor’s algorithm on a quantum computeris 21 =3 X 7.

+ So, the plan is to use quantum error correction to combine many e e w TO* o nt
(imperfect) physical qubits into one (almost perfect) logical qubit. 5 X’O AR R ' g ¥ : "2 g

+ Optimistic estimates are that thousands of physical qubits will be é X O X é X O X 0 (0 x@xG x é X é
needed to build one logical qubit. 2?3 ? ?2?3

® XOX®XO X . XOX@XO X@ X X@

+ So, factoring 2048-bit RSA moduli might need millions of physical qubits . BN oko ole:

+ Gidney & Ekers (2021): 6,000 logical qubits, 20,000,000 physical qubits, 8 hours.
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Fault-tolerant quantum computers? (2)

+ It's important to note that the quantum computers built thus far are not (sufficiently) fault
tolerant.

+ So, while they are major scientific achievements, they do not in any way threaten the security
of presently-deployed cryptosystems.

+ It’s still too early to be able to predict when scalable fault-tolerant quantum computers
will be built.

+ The next major milestone is to build a single logical qubit.

+ December 2023: Major breakthrough in quantum error correction (Harvard /MIT/QuEra).

+ tinyurl.com /QC-ECC pecembert, 2023
, : Researchers demonstrate complex,
+ See Scott Aaronson’s blo§ ]gost for an early analysis: error-corrected quantum a|gozthms
scottaaronson.blog /?p=7651 on 48 logical qubits

+ On the other hand, there is no fundamental reason why a large, fault-tolerant quantum
computer cannot be built.
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The threat of Shor and Grover "

What does this mean for Internet security?

+ Automatic software updates

+ TLS, Signal, WhatsApp, Bluetooth, .....

. “'\. : 1 ,i' .'..o
‘.‘ > (.f .-‘ °

Should we care?

+ The NSA and other organizations are capturing and storing large amounts of
internet traffic right now.

+ Harvest Now Decrypt Later (HNDL) attacks.
What, it anything, should we do to mitigate the threat?

When should we take action? Now? In 5 years? In 10 years? In 20 years?
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NSA’s August 2015 announcement

“IAD will initiate a transition to quantum resistant algorithms in

the not too distant future. Based on experience in deploying Suite B,
we have determined to start planning and communicating early about
the upcoming transition to quantum resistant algorithms. Our ultimate \
goal is to provide cost effective security against a potential quantum
computer. We are working with partners across the USG, vendors, and
standards bodies to ensure there is a clear plan for getting a new suite of algorithms
that are developed in an open and transparent manner that will form the foundation of
our next Suite of cryptographic algorithms."

“Until this new suite is developed and products are available implementing the
quantum resistant suite, we will rely on current algorithms.”

Optional reading: “A riddle wrapped in an enigma” eprint.iacr.org/2015/1018
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POC standardization

. . National Institute of
+ tinyurl.com/pqge-nist Standards and Technology
U.S. Department of Commerce

+ NIST solicited proposals for quantum-resistant signature and key encapsulation algorithms.

+ November 30, 2017: 69 submissions in Round 1.
+ January 30, 2019: 26 submissions selected for Round 2.
+ July 22, 2020: 7+8 submissions selected for Round 3.

+ July 5, 2022: Key encapsulation scheme Kyber, and signature schemes Dilithium, Falcon,
SPHINCS+ chosen for standardization.
(The signature schemes LMS and XMSS had already been standardized in SP 800-28.)

+ On August 13 2024, NIST published the standards FIPS 203 (Kyber), FIPS 204 (Dilithium),
and FIPS 205 (SPHINCS+). (FIPS 206 for Falcon is expected to be completed in a year or two.)
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NSA’s Commercial National Security Algorithm Suite 2.0

September 7, 2022

Public-key Lattice-based
CRYSTALS-Dilithium ? signature

CRYSTALS-Kyber$
Lattice-based

CNSA 2.0 - Symmetric-key key encapsulation scheme
N Advanced Encryption Standard (AES)

' Secure Hash Algorithm (SHA) Hash-based
signature schemes

Software and Firmware Updates (
Xtended Merkle Signature Scheme (XMSS)
| Leighton-Micali Signature (LMS)
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CNSA 2.0 Timeline

2022 2025 2024 2025 2026 2027 2028 2029 giAisiiy 2031 20352 @ALE

Software/firmware signing L eee—————— O
Web browsers/servers and cloud services o
Traditional networking equipment ——®
Operating systems e ———————— O
Niche equipment AU NN S—
Custom application and legacy equipment “9

s~ CNSA 2.0 added as an option and tested
mmm CNSA 2.0 as the default and preferred
@ Exclusively use CNSA 2.0 by this year



Google and PQC

February 23, 2023

g Sundar Pichai
CEO of Google and Alphabet

We are also taking steps to develop quantum computing

responsibly, given its powerful potential. Our
partnerships with governments and the security

community are helping to create systems that can

protect internet traffic from future quantum computer

attacks. And we're making sure services like Google

Cloud, Android and Chrome remain safe and secure in a

quantum future.

V1la: Post-quantum cryptography
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+ Quantum-safe cryptography is

used internally in Google for
data in transit.

Actively involved in enabling
quantum-safe cryptography in

TLS (this is very complex, in
part because of the large
signature sizes).

Coming soon: Quantum-sate

cryptographic primitives in
Tink.
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Messaging

/ o= \ A 1 . iMessage
SIGNAL (@ PPIe R

/ + February 2024: iMessage with
post-quantum security (PQ3).

C~Ne"

+ September 2023: Added quantum
resistance for HNDL protection:

root) = KDF(aV, zB, zV, zT;, SS) + Quantum-safe root key
where SS is a shared secret key establishment + quantum-safe
obtained using Kyber. rekeying.

+ See: PQXDH protocol. + See: Douglas Stebila, “Security

analysis of the iMessage PQ3

protocol”, eprint.iacr.org/
2024 /357

+ Lots of remaining work to make

Signal fully post-quantum secure.
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Amazon and POC
AWS Center for

Quantum computing at Amazon Quantum Computing

.. Thil- s

Amazon Bra ket 1 free hour of simulation

time per month
Accelerate quantum computing research [ forayear with AWS Free Tier

Provides access to quantum hardware:

OQC

Hybrid post-quantum TLS with AWS KMS
s2n-tls: ECDH + Kyber
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V1b: Mathematical prerequisites

1. Modular arithmetic

2. The polynomial ring
R,=Z [x]/(x" + 1)

3. The module Rc];

4. “Small” polynomials

5. Lattice problems:
MLWE, D-MLWE and MSIS

6. Why lattices?
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Modular arithmetic

+ Modulus: g > 2.

+ a=b (mod g) means that a — b is an integer multiple of g. 16 1

. . . 15 2
+ r = a mod g means that r is the remainder upon dividing

the integeraby g (so0 <r < g—1). 1 3
+ Integers modulo g: Z g = {0,1,2,...,q9 — 1}, where addition, 13 4
subtraction and multiplication are performed modulo gq.

+ Example: Z,7 = {0,1,2,3,4,5,6,7,3,9,10,11,12,13,14,15,16}.
+InZ;, 9+15=7, 9-15=11, and 9%x15=16. 1 6
+ More precisely, 9+ 15=24="7 (mod 17), 0 .
9—15=-6=11 (mod 17), 9 3
and 9 X 15 =135=16 (mod 17).

12
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Polynomial rings

+ Let g be a prime modulus.

v Zlx]is the set of all polynomials in x with coefficients in Z .

+ When adding, subtracting, multiplying and dividing polynomials in
Z [ x], all coefficient arithmetic is performed in Z .

+ Example: Let ¢ = 7, and consider f(x) = 5 + 4x* + 3x> € Z-[x] and
g(x) = 6 + 3x + 2x* € Z,[x]. Then:

+ f(x) + g(x) =4 + 3x + 6x° + 3x°.
+ f(x) —gx) =6+4x + 2x?% + 3x°.
+ (X)X g(x) =2 4+ x + 6x% + 2x° + 3x* + 6x°.
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T'he polynomial ring R, =Z|x]/ (x"+ 1)

+ Let g be a prime modulus, and let n be a positive integer.

+ The polynomial ring R, = Z [x]/(x" + 1) is comprised of the polynomials in Z_[x] of
degree less than n, with multiplication of polynomials performed modulo the
reduction polynomial x" + 1.

+ So, to multiply polynomials f(x), g(x) € R;;
. Multiply f(x) and g(x) in Z [x], obtaining a polynomial 4(x) of degree at most
2n — 2.
ii. Divide h(x) by x" + 1 to get a remainder polynomial r(x) of degree at most n — 1.
iii. Then f(x) X g(x) = r(x) in R,

+ Note: The size of R, is g".
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Example: The polynomial ring R, = Z 4| x]/ (x*+ 1)

Letg =41 and n = 4.

+ Then R  is comprised of the polynomials in Z;[x] of degree at most 3.

+ Letf(x) =32+ 17x* +22x> € R and g(x) = 11 + 7x + 19x° +x° € R,
+ In Zq[x],
h(x) = f(x) X g(x) = 24 + 19x + 16x° + 24x> + 26x* + 25x° + 22x°.

+ The division of h(x) by x* + 1 can be accomplished by replacing x* by —1, x> by
—x, and x° by —x?, and then simplifying.

+ We obtain r(x) = 24 + 19x + 16x* + 24x> — 26 — 25x — 22x?
= 39 + 35x + 35x% + 24x°.

+ So, f(x) X g(x) = 39 + 35x + 35x° + 24x° in R,
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Representing polynomials as vectors

+ A polynomial f(x) = ay+ ax + -+ + an_lx”_l inR, = Zq[x]/(x” + 1) can
be represented by its vector of coetficients f = (ay, dy, .., a,_1)-
The vector has length exactly n.

+ Example: Consider R, = Z,|x]/ x*+1).

+ The polynomials f(x) = 23 + 11x* + 7x° € R, and

g(x) = 40 + 5x + 16x* € R, can be represented by the vectors
f=@23,0,11,7) and g = (40,5, 16,0).

+ InR, wehave f+g=(22,5,27,7), f—g=(24,36,36,7), and
fxg=1(12,3,29,7).
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The module R Z]‘

+ Let k be a positive integer.

+ The elements of the module Rc’]< are the length-k vectors of polynomials in

R,

+ Addition and subtraction of elements in RC]]< is component-wise

(so the result is also an element in Ré‘).
+ The inner product (multiplication) of two vectors in Rc]]C results in a
polynomial in R,

+ All vectors in Rc’]‘ will be written as column vectors.
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Example: R 6]]‘

+ Letq=137, n=4, R,=Z,;[x]/(x*+ 1), k=3

93 + 51x + 34x% + 54x° 40 + 78x + x> + 119x°
+ Leta = 27 +87x + 81x2+ 6x3 | and b= | 11 4+ 31x+57x% +90x3| € R,
112 + 15x + 46x7% + 122x° 108 + 72x + 47x% + 14x°
133 4+ 129x + 35x* + 36x° 53 + 110x + 33x* + 72x°
+ Thena + b = 38+ 118x + x> 4+96x3 |, a—b =] 16+ 56x + 24x* + 53x° |,
83 + 87x + 93x* 4 136x° 4 + 80x + 136x% + 108x°

and a’ - b = a[11b[1] + a[2]1b[2] + a[3]b[3] = 93 + 59x + 44x? + 132x°.
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Size

+ We introduce a notion of “size” for:

+ integersin Z ,

+ polynomials in R, = Z [x]/(x" + 1), and &
+ vectors of polynomials in RC’;,

+ This size is the “infinity norm”, denoted by || - || ...

+ For this, we’ll need the notion of “symmetric mod”.
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Symmetric mod: g odd

+ Letgbeodd, andre Z,

+ Then rmods g = { roitr={g= DI, y :
r—q ifr>(g—1)/2, 2 2
so—(g—1)/2 < rmodsg < (g—1)/2. -3 3
+ Example: Letg = 17. 4 4
+ —8 < rmods 17 < 8. . Ay .
+ 6mods17=6, and 13 mods 17 = —4.
+ 94+ 15mods 17 =7. -6 6
+ 9 —15mods 17 = —6. P .
+ O9X 15mods 17 = — 1. -8 8

+ Note: mods ¢ is also written as mod™g.
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Symmetric mod: g even

+ Letgbeeven, andre Z,

roiftr < ql2,
r—q ifr> ql2,

, Thenrmods g =
so—qg/2 <r modsg < g/2.
+ Example: Let g = 18.
+ =8 < rmods 18 < 9.
+ 6mods 18 =6, and 13 mods 18 = — 3.
+ 94 15 mods 18 = 6.
+ 9—15mods 18 = — 6.

+ OX 15 mods 18 = 9.

+ Note: mods ¢ is also written as mod™g.
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Size of polynomials

+ Integers modulo g. Let r € Z . Then ||r||, = | rmods g .

+ Example: Let g = 19. Then ||7||,, = 7 and ||18]|, = 1.
+ Note that 0 < ||7|| ., £ (g — 1)/2if g is odd,
and 0 < ||r||, < g/2if g is even.
+ Ring elements. Let f(x) = f, + fix + - +f,_ X" ' €R
Then [[fll,, = max |Ifl

+ Example: Let f(x) = 1 + 12x + 3x> + 18x> € R,q. Then ||f]|, = 7, since

the mods g representation of fis 1 — 7x + 3x° — x°.

g

+ Module elements. Leta = [a,, ), ..., ak]T = RC’]‘.
Then ||all, = max |||
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“Small” polynomials

+ A polynomial f € R is small if ||f]|, is “small”.

+ Let 17 be a positive integer that is small compared to g/2.
+ Define §, = {f € R, | ||fll, < 7} to be the set of polynomials in R, all of

whose coefficients have size at most 7.
S, is the set of “small” polynomials.

+ Example: Let ¢ = 31. Then 1 + 30x + 29x° + x* + 2x°> € S,

+ Example: § is the set of polynomials in R all of whose coefficients

(when reduced mods ¢g) are —1, 0, or 1.
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Product of small polynomials

+ Claim: The product of two small polynomials in R, is also (relatively)

small.
+ Example: Consider R, = Z :1[x]/(x* + 1) (so g = 137 and n = 4).

+ Letn =2, and consider f(x) = 1 + x — 2x* + 2x° & S, and
gx) =—=24+2x*—x>€S,.

+ Then f(x) - g(x) = 3 + 129x + 8x° + 134x° = 3 — 8x + 8x* — 3x°,
sof-g € Sq.
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Product of small polynomials (2)

+ Claim:Iff€ §, and g € §, , then fg € §,

mno’
+ Justification:
Consider f(x) = fy + fix + -+ f,_x"" ! € S, and
gx) =gog+ g x+ -+ + gn_lx”_l = S,h, and let
h(ix) = f(x)g(x) = hy + hyx + - + hn_lx”_l.
+ Foreachi € [0,n — 1], we have
h = o8& +18i—1 + = +1i80 = Jix18n—1 — Jix28n—2 = =" —Ju=28it2 — Ju—18i+1/
SO ||l oo < 1y,
+ Thus, h € Smﬁﬂz‘ [ ]

+ Similarly, if a € ‘S’,I,]‘1 and b € S,Ifz, thena’b & Sk,
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Lattice problems: MLWE, D-MLWE and MSIS

[ L LS

V1b: Prerequisites

+ The security of Kyber is based on the

hardness of the Decisional-Module Learning
With Errors (D-MLWE) problem, which in

turn is related to the hardness of the MLWE
problem.

+ The security of Dilithium is based on the
hardness of the D-MLWE and Module Short
Integer Solutions (MSIS) problems.

+ I'll introduce the MLWE and D-MLWE
problems next.

+ A description of MSIS will be deferred to the
Dilithium chapter (V3).
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Lattice problem: MLWE

+ Parameters:
¢ primeg, f=] A S|+ |e
+ integers n, k, £ with k > ¢, and
+ integers n,n, <K q/2.

+ Module Learning With Errors (MLWE) instance:
+ A €, R;‘Xf (where R, = Zq[x]/(x” + 1)).
+ t=As + e, where s €p S,;’j and e €5 S,I;Z (sot € RC]]‘).

+ Required: s.
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Example: MLWE

+ Parameters:g =541, n=4,k=3,0=2,n=3,m, =2, soR, = 741 [x]/(x* + 1).
+ MLWE instance generation: Randomly select
442 4+ 502x + 513x% + 15x° 368 + 166x + 37x* + 135x>
A= 1479 +532x + 116x2 + 41x® 12 + 139x + 385x% + 409x% | € R)*%,
29 + 394x 4+ 503x° + 389x° 9 +499x + 92x° + 254x°

— 22X T X 9) 3
s = €S;, and e= |1 +2x+2x*+x°| €], _
3 —2x — 2x% = 2x° ) 2x 2x23x : [l = A S|+ | €
—2 —x°—2x

30 4+ 252x 4+ 401x? + 332x°
and compute t = As + e = | 247 + 350x + 259x2% + 485x> |- Note that ||¢]| ., = 259.

534 + 234x + 137x* + 443x°
+ MLWE problem: Given (A, t), determine s.
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Lattice problem: D-MLWE

+ Parameters:
+ prime g, B
+ integers n, k, £ with k > £, and [ = A S|+ |€
+ integers n,n, K q/2.

+ Decisional-Module Learning With Errors (MLWE) instance:
+ A €p R (where R, = Z [x]/(x" + 1))
+ 7 E Rcl]‘, where z = t with probablhty (and t = As + e withs €5 5 * and
e Ep S,I7‘2) and 7 €p RC]]< with probablllty =

+ Required: Determine whether (A, z) is an MLWE instance (so z = ) or not.
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Why lattices?

Lattices play two roles in assessing the hardness of MLWE, D-MLWE and MSIS.

1. In 2012, Langlois and Stehlé proved that the average-case
hardness of MLWE, D-MLWE and MSIS is at least that of

the worst-case guantum hardness of certain natural lattice TU DARMST AS T " |
problems in certain structured lattices. However, this LATTICE |
CHALLENGE

provable guarantee is highly asymptotic in nature, and

so it isn’t clear what assurances, if any, it offers about the  hitps://www.latticechallenge.org/
hardness of MLWE, D-MLWE and MSIS in practice.

2. The MLWE, D-MLWE and MSIS problems can be rephrased as lattice problem:s.
These lattice problems are being intensively studied, and the fastest attacks known
are used to assess the hardness of MLWE, D-MLWE and MSIS, and thereby justify
concrete parameters for Kyber and Dilithium.
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