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Introduction

2

✦ In 2024, the US government’s National 
Institute of Standards and Technology 
(NIST) published a suite of standards for 
quantum-safe key encapsulation 
mechanisms (KEM) and signature 
schemes.

✦ These schemes are intended to replace RSA 
and ECC, which succumb to quantum 
attacks.

✦ It’s expected that Kyber (a KEM) and 
Dilithium (a signature scheme) will see the 
most deployment in the coming years.
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1. Detailed description of Kyber

✦ Module-Lattice-based Key 
Encapsulation Mechanism (ML-KEM)

✦ FIPS 203

2. Detailed description of Dilithium

✦ Module-Lattice-based Digital Signature 
Algorithm (ML-DSA)

✦ FIPS 204
3. Appreciate the many optimizations 
introduced to facilitate fast implementations, 
and to decrease key, ciphertext and signature 
sizes.
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Course objectives
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Course outline
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✦ V1: Introduction

✦ V2: The Kyber PKE and KEM

✦ V3: The Dilithium signature scheme

✦ V4: Number-Theoretic Transform (NTT)
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V1 outline
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✦ V1a: Post-quantum cryptography
✦ V1b: Mathematical preliminaries
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V1a: Post-quantum cryptography
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1. Quantum computers

2. The threat of quantum computers  
(Shor and Grover)

3. PQC standardization
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Quantum computers
✦ Conceived by Yuri Manin (1980) and Richard Feynman (1981), quantum computers 

are devices that use quantum-mechanical phenomena such as superposition, 
interference, and entanglement to perform operations on data. 

✦ A qubit is the quantum analogue of a classical bit, and can be in two states at the 
same time, each with a certain probability. 

✦ An -qubit register can be in  states at the  
same time, each with a certain probability. 

✦  When a function  is applied to an -qubit register, it is 
simultaneously evaluated at all  states. 

✦ However, when the -qubit register is measured, it reverts to being in one of the  
states according to its underlying probability distribution. 

✦ So, quantum computers are not “massively parallel machines.” 

n 2n

f : {0,1}n → {0,1}n n
2n

n 2n
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The threat of quantum computers: Shor
The public-key systems used in practice are:

✦ RSA: security is based on the hardness of integer factorization.

✦ DL: security is based on the hardness of the discrete logarithm problem.

✦ ECC: security is based on the hardness of the ECDLP.

Shor’s algorithm: In 1994, Peter Shor discovered a very  
efficient (polytime) quantum algorithm for solving these  
problems. So, all RSA, DL, and ECC implementations can be  
totally broken by quantum computers.

9
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The threat of quantum computers: Grover
Let  be a function such that (i)  is efficiently  
computable; and (ii)  for exactly one input .

Grover’s algorithm: In 1996, Lov Grover discovered a quantum algorithm  
for finding  the  with  in  evaluations of   .

F : {0,1}n ⟶ {0,1} F
F(x) = 1 x ∈ {0,1}n

x ∈ {0,1}n F(x) = 1 2n F
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Exhaustive key search: Consider AES with an -bit key. Suppose that we have  known plaintext-
ciphertext pairs , where  is such that the expected number of false keys is very close to 0.

Define  by  if  for all ; and  otherwise.

Then Grover’s algorithm can find the secret key in  quantum operations.

Thus, 256-bit AES keys should be used in order to achieve a 128-bit security level against quantum 
attacks.

ℓ t
(mi, ci) t

F : {0,1}ℓ ⟶ {0,1} F(k) = 1 AESk(mi) = ci 1 ≤ i ≤ t F(k) = 0

2ℓ/2
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When will quantum computers be built?

✦ 1998: (Jones & Mosca) 2-qubit quantum computer

✦ 2017: 50 qubits (IBM)                 tinyurl.com/IBMqc50

✦ 2019: 53 qubits (Google)            tinyurl.com/GoogleQC

✦ 2021: 127 qubits (IBM)               tinyurl.com/IBMqc127

✦ 2022: 433 qubits (IBM)               tinyurl.com/IBMqc433

✦ Dec 2023: 1,121 qubits (IBM)    tinyurl.com/IBMqc1121

11

http://tinyurl.com/IBMqc50
https://tinyurl.com/GoogleQC
https://tinyurl.com/IBMqc127
https://tinyurl.com/IBMqc433
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Fault-tolerant quantum computers?
✦ A quantum computer that can factor a 2048-bit RSA modulus using Shor’s algorithm needs (at 

least) 2048-qubit registers.

✦ These qubits will have to be fault tolerant, i.e., error resistant.

✦ The physical qubits that have been built so far are not (sufficiently) fault tolerant.

✦ The largest number factored using Shor’s algorithm on a quantum computer is .

✦ So, the plan is to use quantum error correction to combine many  
(imperfect) physical qubits into one (almost perfect) logical qubit.

✦ Optimistic estimates are that thousands of physical qubits will be  
needed to build one logical qubit.

✦ So, factoring 2048-bit RSA moduli might need millions of physical qubits

✦ Gidney & Ekers (2021):   6,000 logical qubits,  20,000,000 physical qubits,  8 hours.

21 = 3 × 7

12
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Fault-tolerant quantum computers? (2)
✦ It’s important to note that the quantum computers built thus far are not (sufficiently) fault 

tolerant.
✦ So, while they are major scientific achievements, they do not in any way threaten the security 

of presently-deployed cryptosystems.
✦ It’s still too early to be able to predict when scalable fault-tolerant quantum computers 

will be built.
✦ The next major milestone is to build a single logical qubit.
✦ December 2023: Major breakthrough in quantum error correction (Harvard/MIT/QuEra).

✦ tinyurl.com/QC-ECC
✦ See Scott Aaronson’s blog post for an early analysis:   

scottaaronson.blog/?p=7651
✦ On the other hand, there is no fundamental reason why a large, fault-tolerant quantum 

computer cannot be built.

13

https://tinyurl.com/QC-ECC
http://scottaaronson.blog/?p=7651
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The threat of Shor and Grover
What does this mean for Internet security?

✦ Automatic software updates
✦ TLS, Signal, WhatsApp, Bluetooth, …..

Should we care?

✦ The NSA and other organizations are capturing and storing large amounts of 
internet traffic right now.

✦ Harvest Now Decrypt Later (HNDL) attacks.

What, if anything, should we do to mitigate the threat?

When should we take action? Now? In 5 years? In 10 years? In 20 years?

14
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NSA’s August 2015 announcement
“IAD will initiate a transition to quantum resistant algorithms in  
the not too distant future. Based on experience in deploying Suite B,  
we have determined to start planning and communicating early about  
the upcoming transition to quantum resistant algorithms. Our ultimate 
goal is to provide cost effective security against a potential quantum  
computer. We are working with partners across the USG, vendors, and  
standards bodies to ensure there is a clear plan for getting a new suite of algorithms 
that are developed in an open and transparent manner that will form the foundation of 
our next Suite of cryptographic algorithms."

“Until this new suite is developed and products are available implementing the 
quantum resistant suite, we will rely on current algorithms.”

15

 
Optional reading:  “A riddle wrapped in an enigma”   eprint.iacr.org/2015/1018
✦

https://eprint.iacr.org/2015/1018
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PQC standardization
✦ tinyurl.com/pqc-nist 

✦ NIST solicited proposals for quantum-resistant signature and key encapsulation algorithms.

✦ November 30, 2017: 69 submissions in Round 1.

✦ January 30, 2019: 26 submissions selected for Round 2.

✦ July 22, 2020: 7+8 submissions selected for Round 3.

✦ July 5, 2022: Key encapsulation scheme Kyber, and signature schemes Dilithium, Falcon, 
SPHINCS+ chosen for standardization.  
(The signature schemes LMS and XMSS had already been standardized in SP 800-28.)

✦ On August 13 2024,  NIST published the standards FIPS 203 (Kyber), FIPS 204 (Dilithium), 
and FIPS 205 (SPHINCS+). (FIPS 206 for Falcon is expected to be completed in a year or two.) 

16
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NSA’s Commercial National Security Algorithm Suite 2.0

17

September 7, 2022

Lattice-based
key encapsulation scheme

Hash-based
signature schemes

Lattice-based
signature
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Google and PQC 
February 23, 2023

✦ Quantum-safe cryptography is 
used internally in Google for 
data in transit.

✦ Actively involved in enabling 
quantum-safe cryptography in 
TLS (this is very complex, in 
part because of the large 
signature sizes).

✦ Coming soon: Quantum-safe 
cryptographic primitives in 
Tink.
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Messaging
SIGNAL 

✦ September 2023: Added quantum 
resistance for HNDL protection:

where  is a shared secret key 
obtained using Kyber.

✦ See: PQXDH protocol.

✦ Lots of remaining work to make 
Signal fully post-quantum secure.

root0 = KDF(aV, zB, zV, zT1, SS)
SS

20

Apple
✦ February 2024: iMessage with 

post-quantum security (PQ3).

✦ Quantum-safe root key 
establishment + quantum-safe 
rekeying.

✦ See: Douglas Stebila, “Security 
analysis of the iMessage PQ3 
protocol”, eprint.iacr.org/
2024/357

http://eprint.iacr.org/2024/357
http://eprint.iacr.org/2024/357
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Amazon and PQC
Quantum computing at Amazon

21

Provides access to quantum hardware:

Hybrid post-quantum TLS with AWS KMS
s2n-tls: ECDH + Kyber

AWS Center for  
Quantum Computing
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V1b: Mathematical prerequisites

22

1. Modular arithmetic

2. The polynomial ring 

3. The module 

4. “Small” polynomials

5. Lattice problems:  
MLWE, D-MLWE and MSIS

6. Why lattices?

Rq = ℤq[x]/(xn + 1)

Rk
q
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Modular arithmetic
✦ Modulus: .
✦  means that  is an integer multiple of .
✦  means that  is the remainder upon dividing  

the integer  by  (so ).
✦ Integers modulo : , where addition,  

subtraction and multiplication are performed modulo .
✦ Example: .

✦ In   ,        and   
✦ More precisely,    

  
and 

q ≥ 2
a ≡ b (mod q) a − b q
r = a mod q r

a q 0 ≤ r ≤ q − 1
q ℤq = {0,1,2,…, q − 1}

q
ℤ17 = {0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16}

ℤ17, 9 + 15 = 7 9 − 15 = 11, 9 × 15 = 16.
9 + 15 = 24 ≡ 7 (mod 17),

9 − 15 = − 6 ≡ 11 (mod 17),
9 × 15 = 135 ≡ 16 (mod 17) .

23

ℤ17

0 1

2

3

4

5

6

7
89
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11

12

13

14

15
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Polynomial rings
✦ Let  be a prime modulus.
✦  is the set of all polynomials in  with coefficients in .
✦ When adding, subtracting, multiplying and dividing polynomials in 

, all coefficient arithmetic is performed in .
✦ Example: Let , and consider  and 

. Then:
✦ .
✦ .
✦ .

q
ℤq[x] x ℤq

ℤq[x] ℤq

q = 7 f(x) = 5 + 4x2 + 3x3 ∈ ℤ7[x]
g(x) = 6 + 3x + 2x2 ∈ ℤ7[x]

f(x) + g(x) = 4 + 3x + 6x2 + 3x3

f(x) − g(x) = 6 + 4x + 2x2 + 3x3

f(x) × g(x) = 2 + x + 6x2 + 2x3 + 3x4 + 6x5

24
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The polynomial ring Rq = ℤq[x]/(xn + 1)

✦ Let  be a prime modulus, and let  be a positive integer.
✦ The polynomial ring  is comprised of the polynomials in  of 

degree less than , with multiplication of polynomials performed modulo the 
reduction polynomial .

✦ So, to multiply polynomials :
i. Multiply  and  in  obtaining a polynomial  of degree at most 

.
ii. Divide  by  to get a remainder polynomial  of degree at most .
iii. Then  in .

✦ Note: The size of  is .

q n
Rq = ℤq[x]/(xn + 1) ℤq[x]

n
xn + 1

f(x), g(x) ∈ Rq

f(x) g(x) ℤq[x], h(x)
2n − 2

h(x) xn + 1 r(x) n − 1
f(x) × g(x) = r(x) Rq

Rq qn

25
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Example: The polynomial ring Rq = ℤ41[x]/(x4 + 1)
Let  and . 
✦ Then  is comprised of the polynomials in  of degree at most 3.
✦ Let  and .
✦ In ,   

.
✦ The division of  by  can be accomplished by replacing  by ,  by 

, and  by , and then simplifying.
✦ We obtain            

                         .
✦ So,  in .

q = 41 n = 4
Rq ℤ41[x]

f(x) = 32 + 17x2 + 22x3 ∈ Rq g(x) = 11 + 7x + 19x2 + x3 ∈ Rq

ℤq[x]
h(x) = f(x) × g(x) = 24 + 19x + 16x2 + 24x3 + 26x4 + 25x5 + 22x6

h(x) x4 + 1 x4 −1 x5

−x x6 −x2

r(x) = 24 + 19x + 16x2 + 24x3 − 26 − 25x − 22x2

= 39 + 35x + 35x2 + 24x3

f(x) × g(x) = 39 + 35x + 35x2 + 24x3 Rq

26
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Representing polynomials as vectors
✦ A polynomial  in  can 

be represented by its vector of coefficients .  
The vector has length exactly .

✦ Example: Consider 
✦ The polynomials  and 

 can be represented by the vectors 
 and 

✦ In , we have   ,   ,   and  
.

f(x) = a0 + a1x + ⋯ + an−1xn−1 Rq = ℤq[x]/(xn + 1)
f = (a0, a1, …, an−1)

n
Rq = ℤ41[x]/(x4 + 1) .
f(x) = 23 + 11x2 + 7x3 ∈ Rq

g(x) = 40 + 5x + 16x2 ∈ Rq
f = (23, 0, 11, 7) g = (40, 5, 16, 0) .

Rq f + g = (22, 5, 27, 7) f − g = (24, 36, 36, 7)
f × g = (12, 3, 29, 7)

27
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The module Rk
q

✦ Let  be a positive integer.
✦ The elements of the module  are the length-  vectors of polynomials in 

.
✦ Addition and subtraction of elements in  is component-wise 

(so the result is also an element in ).
✦ The inner product (multiplication) of two vectors in  results in a 

polynomial in .
✦ All vectors in  will be written as column vectors.

k
Rk

q k
Rq

Rk
q

Rk
q

Rk
q

Rq

Rk
q

28
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Example: Rk
q

✦ Let ,  ,  ,   . 

✦ Let  and . 

✦ Then ,  , 

 
and .

q = 137 n = 4 Rq = ℤ137[x]/(x4 + 1) k = 3

a =
93 + 51x + 34x2 + 54x3

27 + 87x + 81x2 + 6x3

112 + 15x + 46x2 + 122x3
b =

40 + 78x + x2 + 119x3

11 + 31x + 57x2 + 90x3

108 + 72x + 47x2 + 14x3
∈ Rk

q

a + b =
133 + 129x + 35x2 + 36x3

38 + 118x + x2 + 96x3

83 + 87x + 93x2 + 136x3
a − b =

53 + 110x + 33x2 + 72x3

16 + 56x + 24x2 + 53x3

4 + 80x + 136x2 + 108x3

aT ⋅ b = a[1]b[1] + a[2]b[2] + a[3]b[3] = 93 + 59x + 44x2 + 132x3

29
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Size

✦ We introduce a notion of “size” for:
✦  integers in , 
✦ polynomials in , and 
✦ vectors of polynomials in . 

✦ This size is the “infinity norm”, denoted by .
✦ For this, we’ll need the notion of “symmetric mod”.

ℤq

Rq = ℤq[x]/(xn + 1)
Rk

q

∥ ⋅ ∥∞

30
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Symmetric mod:  oddq
✦ Let  be odd, and .

✦ Then  

so 
✦ Example: Let .

✦ .
✦    and   .
✦ .
✦ .
✦ .

✦ Note:  is also written as .

q r ∈ ℤq

r mods q = { r  if r ≤ (q − 1)/2,
r − q  if r > (q − 1)/2,

−(q − 1)/2 ≤ r mods q ≤ (q − 1)/2.
q = 17

−8 ≤ r mods 17 ≤ 8
6 mods 17 = 6, 13 mods 17 = − 4
9 + 15 mods 17 = 7
9 − 15 mods 17 = − 6
9 × 15 mods 17 = − 1

mods q mod+q

31
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Symmetric mod:  evenq
✦ Let  be even,  and .

✦
Then  

so 
✦ Example: Let .

✦ .
✦    and   .
✦ .
✦ .
✦ .

✦ Note:  is also written as .

q r ∈ ℤq

r mods q = { r  if r ≤ q/2,
r − q  if r > q/2,

−q/2 < r  mods q ≤ q/2.
q = 18

−8 ≤ r mods 18 ≤ 9
6 mods 18 = 6, 13 mods 18 = − 5
9 + 15 mods 18 = 6
9 − 15 mods 18 = − 6
9 × 15 mods 18 = 9

mods q mod+q

32
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Size of polynomials
✦ Integers modulo . Let . Then 

✦ Example: Let . Then  and .
✦ Note that  if  is odd,  

and  if  is even.
✦ Ring elements. Let .  

Then .
✦ Example: Let . Then , since 

the mods  representation of  is . 
✦ Module elements. Let  

Then .

q r ∈ ℤq ∥r∥∞ = |r mods q | .
q = 19 ∥7∥∞ = 7 ∥18∥∞ = 1

0 ≤ ∥r∥∞ ≤ (q − 1)/2 q
0 ≤ ∥r∥∞ ≤ q/2 q

f(x) = f0 + f1x + ⋯ + fn−1xn−1 ∈ Rq
∥f∥∞ = max ∥fi∥∞

f(x) = 1 + 12x + 3x3 + 18x5 ∈ R19 ∥f∥∞ = 7
q f 1 − 7x + 3x3 − x5

a = [a1, a2, …, ak]T ∈ Rk
q .

∥a∥∞ = max ∥ai∥∞

33
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“Small” polynomials

✦ A polynomial  is small if  is “small”.
✦ Let  be a positive integer that is small compared to . 
✦ Define  to be the set of polynomials in  all of 

whose coefficients have size at most .  
 is the set of “small” polynomials.

✦ Example: Let . Then .
✦ Example:  is the set of polynomials in  all of whose coefficients 

(when reduced mods ) are , 0, or 1.

f ∈ Rq ∥f∥∞

η q/2
Sη = {f ∈ Rq | ∥f∥∞ ≤ η} Rq

η
Sη

q = 31 1 + 30x + 29x2 + x4 + 2x5 ∈ S2

S1 Rq
q −1

34
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Product of small polynomials

✦ Claim: The product of two small polynomials in  is also (relatively) 
small.

✦ Example: Consider  (so  and ).
✦ Let , and consider  and 

. 
✦ Then ,  

so .

Rq

Rq = ℤ137[x]/(x4 + 1) q = 137 n = 4
η = 2 f(x) = 1 + x − 2x2 + 2x3 ∈ S2

g(x) = − 2 + 2x2 − x3 ∈ S2

f(x) ⋅ g(x) = 3 + 129x + 8x2 + 134x3 ≡ 3 − 8x + 8x2 − 3x3

f ⋅ g ∈ S8

35
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Product of small polynomials (2)
✦ Claim: If  and , then .
✦ Justification:  

Consider  and   
                , and let  
                .

✦ For each , we have 
, 

so .
✦ Thus, .    
✦ Similarly, if  and , then .

f ∈ Sη1
g ∈ Sη2

fg ∈ Snη1η2

f(x) = f0 + f1x + ⋯ + fn−1xn−1 ∈ Sη1

g(x) = g0 + g1x + ⋯ + gn−1xn−1 ∈ Sη2

h(x) = f(x)g(x) = h0 + h1x + ⋯ + hn−1xn−1

i ∈ [0, n − 1]
hi = f0gi + f1gi−1 + ⋯ + fig0 − fi+1gn−1 − fi+2gn−2 − ⋯ − fn−2gi+2 − fn−1gi+1

∥hi∥∞ ≤ nη1η2

h ∈ Snη1η2
□

a ∈ Sk
η1

b ∈ Sk
η2

aTb ∈ Sknη1η2

36
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Lattice problems: MLWE, D-MLWE and MSIS
✦ The security of Kyber is based on the 

hardness of the Decisional-Module Learning 
With Errors (D-MLWE) problem, which in 
turn is related to the hardness of the MLWE 
problem.

✦ The security of Dilithium is based on the 
hardness of the D-MLWE and Module Short 
Integer Solutions (MSIS) problems.

✦ I’ll introduce the MLWE and D-MLWE 
problems next.

✦ A description of MSIS will be deferred to the 
Dilithium chapter (V3).

37
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Lattice problem: MLWE
✦ Parameters: 

✦ prime , 
✦ integers  with , and 
✦ integers . 

✦ Module Learning With Errors (MLWE) instance: 
✦  (where ).
✦ , where  and  (so ).

✦ Required: .

q
n, k, ℓ k ≥ ℓ
η1, η2 ≪ q/2

A ∈R Rk×ℓ
q Rq = ℤq[x]/(xn + 1)

t = As + e s ∈R Sℓ
η1

e ∈R Sk
η2

t ∈ Rk
q

s

38

t A es= +
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Example: MLWE
✦ Parameters: , , , , , ,  so .
✦ MLWE instance generation: Randomly select 

, 

,  and  , 

 

and compute .   Note that .

✦ MLWE problem: Given , determine .  

q = 541 n = 4 k = 3 ℓ = 2 η1 = 3 η2 = 2 Rq = ℤ541[x]/(x4 + 1)

A =
442 + 502x + 513x2 + 15x3 368 + 166x + 37x2 + 135x3

479 + 532x + 116x2 + 41x3 12 + 139x + 385x2 + 409x3

29 + 394x + 503x2 + 389x3 9 + 499x + 92x2 + 254x3
∈ R3×2

q

s = [ 2 − 2x + x3

3 − 2x − 2x2 − 2x3] ∈ S2
3 e =

2 − 2x − x2

1 + 2x + 2x2 + x3

−2 − x2 − 2x3
∈ S3

2

t = As + e =
30 + 252x + 401x2 + 332x3

247 + 350x + 259x2 + 485x3

534 + 234x + 137x2 + 443x3
∥t∥∞ = 259

(A, t) s

39
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Lattice problem: D-MLWE
✦ Parameters: 

✦ prime , 
✦ integers  with , and 
✦ integers . 

✦ Decisional-Module Learning With Errors (MLWE) instance: 
✦  (where ).
✦ , where  with probability  (and  with  and 

) and  with probability 

✦ Required: Determine whether  is an MLWE instance (so ) or not.

q
n, k, ℓ k ≥ ℓ
η1, η2 ≪ q/2

A ∈R Rk×ℓ
q Rq = ℤq[x]/(xn + 1)

z ∈ Rk
q z = t 1

2
t = As + e s ∈R Sℓ

η1

e ∈R Sk
η2

z ∈R Rk
q

1
2

.

(A, z) z = t
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Why lattices?
Lattices play two roles in assessing the hardness of MLWE, D-MLWE and MSIS.

1. In 2012, Langlois and Stehlé proved that the average-case 
hardness of MLWE, D-MLWE and MSIS is at least that of  
the worst-case quantum hardness of certain natural lattice  
problems in certain structured lattices. However, this  
provable guarantee is highly asymptotic in nature, and  
so it isn’t clear what assurances, if any, it offers about the 
hardness of MLWE, D-MLWE and MSIS in practice.

2. The MLWE, D-MLWE and MSIS problems can be rephrased as lattice problems. 
These lattice problems are being intensively studied, and the fastest attacks known 
are used to assess the hardness of MLWE, D-MLWE and MSIS, and thereby justify 
concrete parameters for Kyber and Dilithium.
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