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Kyber

+ Kyber is a quantum-safe
Key Encapsulation Mechanism

(KEM).

+ Standardized by NIST in FIPS 203,
where it is called ML-KEM
(Module-Lattice-based KEM).

+ Kyber-KEM was designed by
applying the Fujisaki-Okamoto
transform to a public-key
encryption scheme (Kyber-PKE).
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V2 outline

+ V2a: Kyber-PKE (simplified)
+ V2b: Optimizations

+ V2c: Kyber-PKE (full scheme)
+ V2d: Kyber-KEM
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V2a: Kyber-PKE (simplified)

1. Rounding

2. Domain parameters and key
generation

3. Encryption and decryption
4. Security

5. Decryption doesn’t always work
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Notation

+ Recall:
+ R, = Zq[x]/(x” + 1).
+ §, = set of polynomials in R, with (mods ¢g) coefficients in [—7, 77].
k ¢k
+ Rq, S,7
+ The plaintext space is {0,1}".

A plaintext m € {0,1}" is associated with a polynomial in R, with 0-1 coefficients.

+ Example: If n = 5 and m = 10110, then m < m(x) = 1 + x* + x°.

+ |x] is the largest integer < x, and |x] is the smallest integer > x.
+ Example: [5.25| =5 and |—-5.25] = — 6, whereas [5.25| = 6 and |[—-5.25]| = - 5.
+ | x| denotes the closest integer to x, with ties broken upwards.

+ Example: [13.3| =13, [13.5] =14, [13.7| =14, [-13.5] = - 13, and
[—13.7| = — 14.
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Rounding

+ Let g be an odd prime, and let x € [0, g — 1].

+ Letx'=xmods g, recall thatx’' € [ — (g —1)/2,(g — 1)/2].
0, it —g/4 < x' < ql/4,

Then R —
+ Then Round,(x) {1, otherwise. el

+ Example: Let g = 3329. g
0, if —832 <x’' <832, ||
Then Round (x) =

1, otherwise .

+ The Round, operation can be extended to polynomials in R,

by applying it to each coefficient of the polynomial.

+ Example: Let ¢ = 3329. Then
Round,(3000 + 1500x + 2010x* + 37x°) = x + x*.
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Domain parameters and key generation

For concreteness, we’ll use
the ML -KEM-768 domain Kyber-PKE(s) key generation: Alice does:

parameters: 1. SelectA €5 R, s €, S, and e € S,

*q=23329 2. Compute t = As + e.

* n=256 3. Alice’s encryption (public) key is (A, 7);

+ k=3 her decryption (private) key is s.

v = Note: Computing s from (A, 7) is an instance of
MLWE.

+ ]72 —
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Encryption and decryption

Kyber-PKE(s) encryption: To encrypt a message
m € {0,1}" for Alice, Bob does: Kyber-PKE(s) decryption:
To decrypt ¢ = (u, v), Alice

1. Obtain an authentic copy of Alice’s encryption
key (A, 1). does:

2. Select r € S,’;l, e Ex S,’;z, and e, €Ep S, . 1. Compute
g m = Round (v — sTu).
3. Compute u = Alr+ e; and v = thr + er + [=|m.
2 Note: Alice uses her

4. Output ¢ = (u, v). decryption key s.

Note: c € RCI; X Rq.
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Toy example: Kyber-PKE(s) (1)

+ Domain parameters:q = 137, n=4, k=2, ny =2, n, = 2.

+ Key generation: Alice selects:

A= |21 4570+ 78x% + 43x° 126+122x+19x2+125x3]
111 4+ 9x + 63x2 + 333 105 + 61x + 71x2 + 64x3 |
1 4+ 2x — x2 + 2x° ll—xz+x3
s = , e = , and computes
—x + 2x° —x + x*
2 3
f= Ag 4 o = 55+96x+123;c + Tx ] | = A ol 4+ 1o
32 +27x + 127x% + 100x°

Alice’s encryption key is (A, 1); her decryption key is s.
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Toy example: Kyber-PKE(s) (2)

+ Encryption: To encrypt the plaintext message m = 0111 < x + x* + x>, Bob selects

1 —2x%2 + x°
—1 4+ 2x = 2x% 4+ x°

—2+2x+x2—x3]
= p 61

—1 + x + x2

56 + 32x + 77x* + 9x°

, €y = 2+ 2x — x4+ x°,
45 + 21x + 2x% + 127x°
and v =tlr + e, + 69m = 3 + 10x + 8x* + 123x°.

I ) 'I ' H
The ciphertext is ¢ = (u, v).

+ Decryption: To decrypt ¢ = (u, v), Alice uses her decryption = +[eo] +[]
key s to compute v — s'u = 4 + 60x + 79x* + 66x°, and r f%Jm
then rounds its coefficients to obtain x + x* + x>, thereby
recovering the plaintext m = 0111.

and computes u = A'r + ¢, =
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decurity

+ Claim: Simplified Kyber-PKE(s) is indistinguishable against

chosen-plaintext attack assuming that D-MLWE is intractable.

T
+ Proof: The encryption operation can be written as: [u] . [AT
[

€1
€

r +

Vv

0
A

T
T] is indistinguishable from random. Again by the
[

Alr + e
thr + €,

Thus, from the adversary’s perspective, v appears to be the sum of the random

By the D-MLWE assumption,

AT

e
D-MLWE assumption, [ . 1
[

€

I +

] is indistinguishable from random.

element (t'r + ¢,) in R, and the message polynomial [gj m, so the adversary can

2

learn nothing about m. [
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Decryption doesn 't always work

+ Question: Does decryption work? i.e., does m = Round (v — 5" u)?

+ Wehavev —s'u= ({t"r+e,+ [g/2|m) — s'u
=(s"AT+er+e,+ [q/2|lm—s"(Alr + e))

=s'Alr+e'r+e,+ [ql2lm—s"A'r—s'e,

=elr+e,—s'e; + [q/2|m.
+ Thus, Round (v — s'u) = m if each coefficient E; of the error polynomial E(x) = e'r+ e, — s ¢,
satisfies —g/4 < E. mods g < g/4, ie, ||E|l < g/4.
+ Now, ||E;|l o < knni + ny + knipyn,.

+ For the ML-KEM-768 parameters (¢ = 3329, n = 256, k = 3, n; = n, = 2), we have
|E:|| . < 6146 £ g/4. Hence, decryption is not gquaranteed to succeed.

+ However, it can be shown that ||E||, < g/4 with probability extremely close to 1.
Consequently, decryption will almost certainly succeed.
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V2b: Optimizations

1. Smaller public keys
2. Ciphertext compression
3. Central binomial distribution

4. Fast polynomial multiplication
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> Encryption key and ciphertext sizes

+ For concreteness, we’ll consider the ML-KEM-768
parameters (g = 3329, n =256, k=3,n, =2, n, = 2).

+ The bitlength of an integer in Z_ is [log, 3329 | = 12 bits.

+ Encryption key: The size of an encryption key (A, ?) is
(9 X256 X 12) + (3 X 256 X 12) bits, or 4,608 bytes.

+ Ciphertext: The size of a ciphertext ¢ = (u, v) is
(3 X256 X 12) + (256 X 12) bits, or 1,536 bytes.
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Smaller encryption keys

+ Idea: Generate A from a random (and public) 256-bit seed p.

+ The polynomials in A can be generated by first selecting
p €, {0,1}%°°, and then generating the coefficients of the
polynomials by hashing p with a counter.

+ The encryption key is (p, t) instead of (A, 7).
+ Anyone who knows p can generate A.

+ The encryption key size is now 256 + (3 X 256 X 12) bits,
or 1,184 bytes (a substantial reduction from 4,608 bytes).
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Compression

+ Idea: Discard the “low order” bits of the coefficients of all polynomials in
the ciphertext ¢ = (u, v).

+ Let 1 <d < |log, g, and define:
+ Forx € [0, — 1], Compress (x,d) = | (24/g) - x| mod 2¢.
+ Fory € [0,29-1], Decompressq(y, d) = [(g/2% - y| mod g.

+ Fact: Letx € [0, g — 1] and x" = Decompressq(Compressq(x, d),d).
Then ||x"— x||, < [q/2¢].

+ The functions Compress and Decompress extend in the natural way to
polynomials in R, and polynomial vectors in RZ]‘.
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Examples: compression and decompression (1)

+Letg=19and d = 2.
+ Letx € [0, 18].

+ Let y = Compress, 9(x, 2).

+ Let x" = Decompress(y, 2).

+ Then ||x' = x|| . < 2.
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Examples: compression and decompression (2)

+ Letg=3329, d=10, x€[0,g —1].

+ Letx' = Decompressq(Compressq(x, d),d).

+ Then |(x — x) mods g| < 2.

+ Example:

+ Compress (223 + 1438x + 3280x* + 798x°, 10) = 69 + 442x + 1009x* + 245x°.
+ Decompress (69 + 442x + 1009x~ + 245x°,10) = 224 + 1437x + 3280x* + 796x°.

+ The error polynomial is —1 + x + 2x°.
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Examples: compression and decompression (3)

—— — . —— — —— -
A SRES 7 oy - VN 3 d P Rt N AN T . R A 20 Akl R
S ',im “% . "5: ‘ e A o ;'u ¥ B w4
b g A ’ ¢ T * 4 5 SRR i
g B N $ ’
% =4 s 5 250

+ Letg=3329, d=4, xe€0,qg—1].

+ Letx' = Decompressq(Compressq(x, d),d).

+ Then |(x — x") mods g| < 104.

+ Example:

+ Compress (223 + 1438x + 3280x2 4 798x>,4) = 1 + Tx + 4x°.
+ Decompress (1 + 7x + 4x°,4) = 208 + 1456x + 832x°.

+ The error polynomial is 15 — 18x — 49x* — 34x°.
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Ciphertext compression

+ The ciphertext components u and v are replaced by ¢, = Compressq(u, d )

and ¢, = Compressq(v, d ).

+ The ML-KEM-768 parameters (g = 3329, n = 256, k = 3, n, = 2, 1, = 2) have
d,=10and d, = 4.

+ So, the size of the compressed ciphertext is 3 X 256 X 10 + 256 X 4 bits, or
1,088 bytes (a significant reduction from 1,536 bytes).
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Central binomial distribution

+ Idea: A polynomial can be selected uniformly at random from §, by selecting each of its

coefficients uniformly at random from [—#, 1] . To simplify this, the coefficients c are
drawn instead according to a central binomial distribution (CBD) as follows.

+ Select 5 pairs of bits (a;, b)) (with 1 < i < 7) uniformly at random, and output
m

C = Z (a; — b;). Note that c € [—n,#].
i=1

2
+ In fact, foreachj € [—n,n], Pr(c =)) = ( _:] .>/22’7; this is the CBD.
H+J
+ Example: For n = 2, the 6/16
central binomial distribution is: 4/16 4/16
F— F—
) -1 0 1 2
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Fast polynomial multplication

+ The computation times for encryption and decryption is
dominated by the time to multiply polynomials in

+ The multiplication can be sped up considerably by using the

Number-Theoretic Transform (NTT), which will be covered
in V4.
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V2ec: Kyber-PKE (full)

1. Domain parameters and key
generation

2. Encryption and decryption
3. Decryption doesn’t always work

4. Security
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Domain parameters and key generation

For concreteness, we’ll
use the ML-KEM-768
domain parameters:

+ g = 3329
+ n=1256
+ k=3

+n=2andn, =2
+d, =10and d, =4

EE——

V2¢: Kyber-PKE (full)

Kyber-PKE key generation: Alice does:

1. Select p €5 {0,1}%° and compute
A = Expand(p), where A & Rka.

2. SeleCt \) ECBD Sk and € ECBD Sk

3. Compute t = As + e.

4. Alice’s encryption (public) key is (p, 1);
her decryption (private) key is s.
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Encryption and decryption

Kyber-PKE encryption: To encrypt a message
m € {0,1}" for Alice, Bob does:

1. Obtain an authentic copy of Alice’s encryption key

(p, t) and compute A = Expand(p).

2. Selectr €.5p Sk, €1 €cap Sk and e; Ecpp 9y, -
3. Compute u = Alr + e; and v = thr + € t+ [EJ m.

4. Compute ¢; = Compressq(u,

CHh = Compressq(v,

5. Output ¢ = (¢, ¢)).

d,) and
d,).

V2¢: Kyber-PKE (full)
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Kyber-PKE decryption: To
decrypt ¢ = (¢y, ¢,), Alice does:

1. Compute
u' = Decompressq(cl, d ) and

V' = Decompressq(cz, d ).

2. Compute
m = Round (V' — sTu).
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Decryption doesn 't always work

+ Question: Does decryption work? i.e., does m = Round,(v' — s u’)?

+ Letu'=u+e,andv' =v +e,

+ We have v — s

I

u/

v+e)—s'(u+te,)
v—slu+ e, — sTeM

elr+e,—s'e,+e,—s'e + [q/2|m.

+ Thus, Round,(v' — s'u’) = m if each coefficient E; of the error polynomial
Ex)y=e'r+e,—s'e;+e,—s'e, satisfies —q/4 < E;mods g < g/4, ie., ||E|. < q/4.

+ For the ML-KEM-768 parameters | E;| £ g/4 and hence decryption is not quaranteed to

succeed.

+ However, it can be shown that || E||,, < g/4 with probability extremely close to 1.
Consequently, decryption will almost certainly succeed.

V2c¢: Kyber-PKE (full)
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decurity

+ Ciphertext compression doesn’t affect the security
of Kyber-PKE. Consequently, the following claim holds:

+ Claim: Kyber-PKE is indistinguishable against chosen-plaintext
attack assuming that D-MLWE is intractable.

+ Note: Kyber-PKE is not intended for stand-alone use.
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V2d: Kyber-KEM

1. Key encapsulation mechanisms
2. Kyber-KEM

3. Parameter sets

4. Omitted details
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Key encapsulation mechanisms

+ A key encapsulation mechanism (KEM) allows two parties to establish a
shared secret key.

+ A KEM is comprised of three algorithms:

1. Key generation: Each user, say Alice, uses this algorithm to generate an
encapsulation key ek (public key) and a decapsulation key dk (the
private key).

2. Encapsulation: Bob uses Alice’s encapsulation key ek to generate a
secret key K and ciphertext ¢, and sends c to Alice.

3. Decapsulation: Alice uses her decapsulation key dk to recover K from
the ciphertext c.
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Kyber-KEM

+ Kyber-KEM is derived by applying (a slight modification) of
the “Fujisaki-Okamoto” (FO) transform to Kyber-PKE.

+ The FO transform is a generic method for converting a public-
key encryption scheme that is secure against chosen-plaintext
attacks to one that is secure against chosen-ciphertext attacks.

+ The transform uses three hash functions:
G:{0,1}* — {0,1V"%, H:{0,1}* — {0,1}%° and
J:1{0,1}* — {0,1}%°,
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Fujisaki-Okamoto transtorm

+ Encapsulation: Kyber-PKE is used to encrypt a randomly selected m € {0,1}%°°.

+ Derandomization: m and the encapsulation key ek are hashed to produce a random
seed R and the secret key K. The random polynomials r, ¢; and e, needed for
encryption are derived from R.

+ Decapsulation: The intended recipient decrypts the Kyber-PKE ciphertext ¢ to recover m’,
and then hashes m’and ek to obtain R’ and K'. She then re-encrypts m’ (using R’) and
compares the resulting ciphertext ¢’ with c.

+ If ¢ = ¢/, she accepts K’; otherwise, she outputs a random key K (which is
independent of K) obtained by hashing ¢ and a secret z.

+ Kyber-KEM has plaintext awareness, i.e., decapsulation will produce K (and not K) only if
the entity who performed the encapsulation already knows K.

+ This provides resistance to chosen-ciphertext attacks.
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Domain parameters and key generation

For concreteness, we’ll

use the ML-KEM-768 Kyber-KEM key generation: Alice does:

d ’ ters:
Omain parametets 1. Use the Kyber-PKE key generation algorithm

+ g = 3329 to select a Kyber-PKE encryption key (p, )
+ =256 and decryption key s.

256
+ k=13 2. Selectz €, {0,1}-°°.

3. Alice’s encapsulation key is ek = (p, 1); her

v and 7, decapsulation key is dk = (s, ek, H(ek), 7).

+d =10and d, =4

EE—
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Encapsulation and decapsulation

Kyber-KEM encapsulation: To establish a
shared secret key with Alice, Bob does:

1. Obtain an authentic copy of Alice’s
encapsulation key ek.

2. Select m €p {0,1}%°.

3. Compute h = H(ek) and
(K, R) = G(m, h), where K, R € {0,1}%°.

4. Use the Kyber-PKE encryption algorithm
to encrypt m with encryption key ek, and
using R to generate the random quantities
needed; call the resulting ciphertext c.

5. Output the secret key K and ciphertext c.

v2d: Kyber-KEM

Kyber-KEM decapsulation: To recover the secret key K from
c using dk = (s, ek, H(ek), z), Alice does:

1.

Use the Kyber-PKE decryption algorithm to decrypt c
using decryption key s; call the resulting plaintext m’.

. Compute (K, R") = G(m’, H(ek)).
. Compute K = J(z,¢).

Use the Kyber-PKE encryption algorithm to encrypt m’
with encryption key ek, and using R’ to generate the
random quantities needed; call the resulting ciphertext c".

If ¢ # ¢’ then return(K).
Return(K").
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Decapsulation failure

+ Decapsulation fails when ¢ # ¢/, whereby the key K that is
outputted is (almost certainly) different from the key K that was

encapsulated.

ke b= 2,/ _ : i)
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+ It can be shown that the
decapsulation failure rate is negligible.
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decurity

+ Kyber-KEM is indistinguishable against
chosen-ciphertext attacks assuming that D-MLWE e} )
is intractable, and G, H, J are random functions.

+ Kyber-KEM is also indistinguishable against a chosen-
ciphertext attack by a quantum adversary who is able to
make both classical queries and quantum queries (in
superposition) to G, H and J.
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Parameter sets

Security encaps. key | ciphertext | decapsulation

category | ¢ n m | 2 | dy | dy | size (bytes) | size (bytes) | failure rate
ML-KEM-512 1 3329 | 256 3 12|10 4 800 768 < 27199
ML-KEM-768 3 3329 | 256 212110 4 1184 1088 < 2164
ML-KEM-1024 5 3329 | 256 212 (11| 5 1568 1568 < -1

Categories 1, 3, 5: Fastest known attacks require at least as much resources as needed for exhaustive

v2d: Kyber-KEM

key search on, respectively, a 128-bit, 192-bit, and 256-bit block cipher.
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Omitted details

+ Formatting for bit strings and byte strings.

+ Hash functions:

FIPS PUB 202

FEDERAL INFORMATION PROCESSING STANDARDS

PUBLICATION

SHA-3 Standard: Permutation-Based Hash and

Extendable-Output Functions

+ G is SHA3-512, His SHA3-256, Jis SHAKE256 (see FIPS 202).

+ eXtendable Output Function (XOF) used to generate A.

+ SHAKE128 1s used.

+ PseudoRandom Function (PRF) used to generate s, e, 1, €;, e,.

+ SHAKE?256 is used.
+ Number-Theoretic Transform (NTT)

+ for fast polynomial multiplication in R, = Z3359|x]/ (x> + 1) (see V4b).

v2d: Kyber-KEM
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