

V2: The Kyber PKE and KEM

Kyber and
Dilithium

© Alfred Menezes

August 2024

Kyber

- ◆ Kyber is a quantum-safe Key Encapsulation Mechanism (KEM).
- ◆ Standardized by NIST in FIPS 203, where it is called ML-KEM (Module-Lattice-based KEM).
- ◆ Kyber-KEM was designed by applying the Fujisaki-Okamoto transform to a public-key encryption scheme (Kyber-PKE).

V2 outline

- ♦ V2a: Kyber-PKE (simplified)
- ♦ V2b: Optimizations
- ♦ V2c: Kyber-PKE (full scheme)
- ♦ V2d: Kyber-KEM

V2a: Kyber-PKE (simplified)

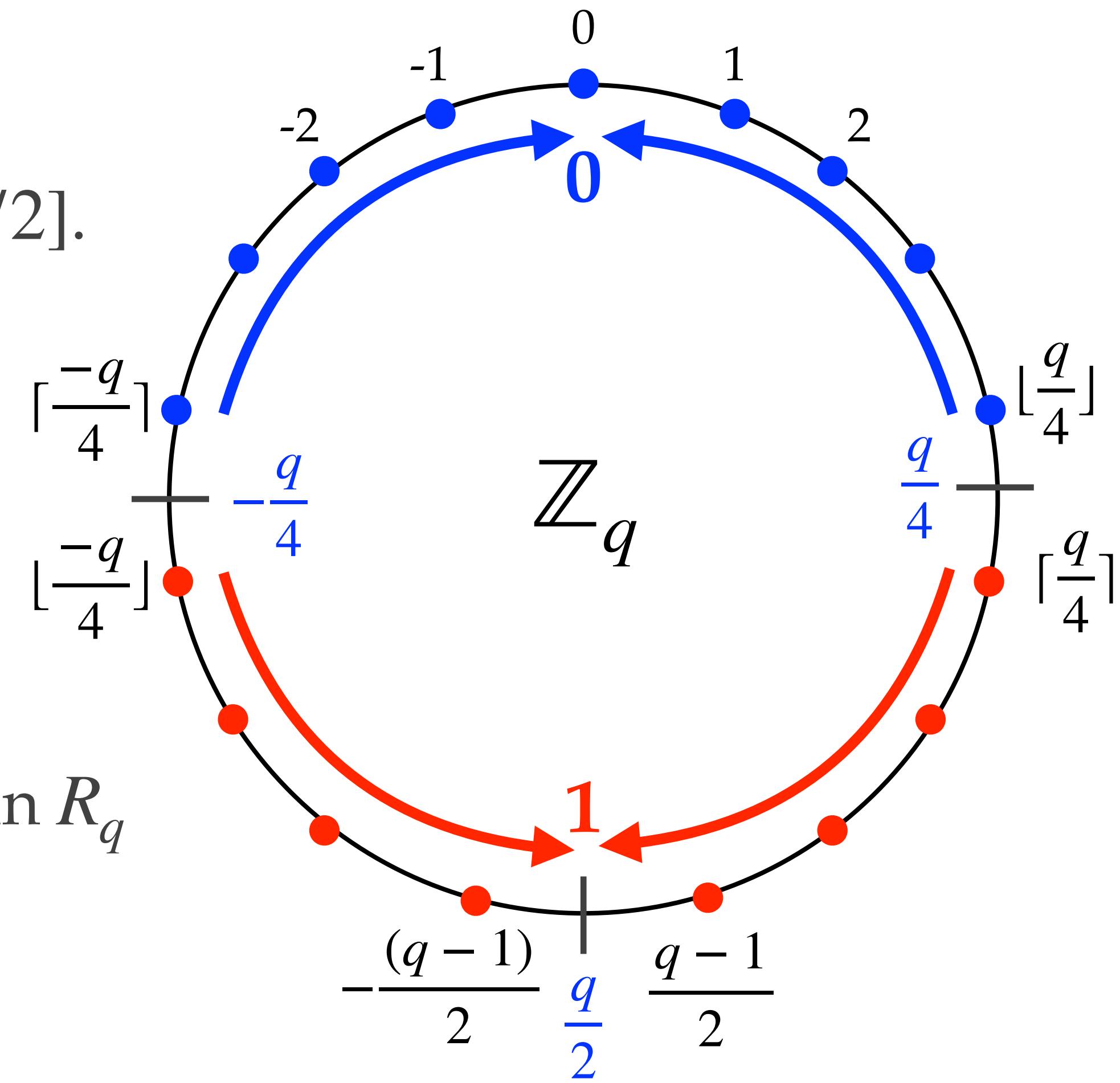
1. Rounding
2. Domain parameters and key generation
3. Encryption and decryption
4. Security
5. Decryption doesn't always work

Notation

- ♦ Recall:
 - ♦ $R_q = \mathbb{Z}_q[x]/(x^n + 1)$.
 - ♦ S_η = set of polynomials in R_q with (mods q) coefficients in $[-\eta, \eta]$.
 - ♦ $R_{q'}^k, S_\eta^k$
- ♦ The **plaintext space** is $\{0,1\}^n$.
 - A plaintext $m \in \{0,1\}^n$ is associated with a polynomial in R_q with 0-1 coefficients.
 - ♦ Example: If $n = 5$ and $m = 10110$, then $m \leftrightarrow m(x) = 1 + x^2 + x^3$.
- ♦ $\lfloor x \rfloor$ is the largest integer $\leq x$, and $\lceil x \rceil$ is the smallest integer $\geq x$.
 - ♦ Example: $\lfloor 5.25 \rfloor = 5$ and $\lfloor -5.25 \rfloor = -6$, whereas $\lceil 5.25 \rceil = 6$ and $\lceil -5.25 \rceil = -5$.
- ♦ $\lceil x \rceil$ denotes the closest integer to x , with ties broken upwards.
 - ♦ Example: $\lceil 13.3 \rceil = 13$, $\lceil 13.5 \rceil = 14$, $\lceil 13.7 \rceil = 14$, $\lceil -13.5 \rceil = -13$, and $\lceil -13.7 \rceil = -14$.

Rounding

- Let q be an odd prime, and let $x \in [0, q - 1]$.
- Let $x' = x \bmod q$; recall that $x' \in [-(q-1)/2, (q-1)/2]$.
- Then $\text{Round}_q(x) = \begin{cases} 0, & \text{if } -q/4 < x' < q/4, \\ 1, & \text{otherwise.} \end{cases}$
 - Example: Let $q = 3329$. Then $\text{Round}_q(x) = \begin{cases} 0, & \text{if } -832 \leq x' \leq 832, \\ 1, & \text{otherwise.} \end{cases}$
- The Round_q operation can be extended to polynomials in R_q by applying it to each coefficient of the polynomial.
 - Example: Let $q = 3329$. Then $\text{Round}_q(3000 + 1500x + 2010x^2 + 37x^3) = x + x^2$.



Domain parameters and key generation

For concreteness, we'll use the ML-KEM-768 **domain parameters**:

- ◆ $q = 3329$
- ◆ $n = 256$
- ◆ $k = 3$
- ◆ $\eta_1 = 2$
- ◆ $\eta_2 = 2$

Kyber-PKE(s) key generation: Alice does:

1. Select $A \in_R R_q^{k \times k}$, $s \in_R S_{\eta_1}^k$, and $e \in_R S_{\eta_1}^k$.
2. Compute $t = As + e$.
3. Alice's **encryption (public) key** is (A, t) ;
her **decryption (private) key** is s .

Note: Computing s from (A, t) is an instance of MLWE.

Encryption and decryption

Kyber-PKE(s) encryption: To encrypt a message $m \in \{0,1\}^n$ for Alice, Bob does:

1. Obtain an authentic copy of Alice's encryption key (A, t) .
2. Select $r \in_R S_{\eta_1}^k$, $e_1 \in_R S_{\eta_2}^k$ and $e_2 \in_R S_{\eta_2}$.
3. Compute $u = A^T r + e_1$ and $v = t^T r + e_2 + \lceil \frac{q}{2} \rceil m$.
4. Output $c = (u, v)$.

Note: $c \in R_q^k \times R_q$

Kyber-PKE(s) decryption:
To decrypt $c = (u, v)$, Alice does:

1. Compute $m = \text{Round}_q(v - s^T u)$.

Note: Alice uses her decryption key s .

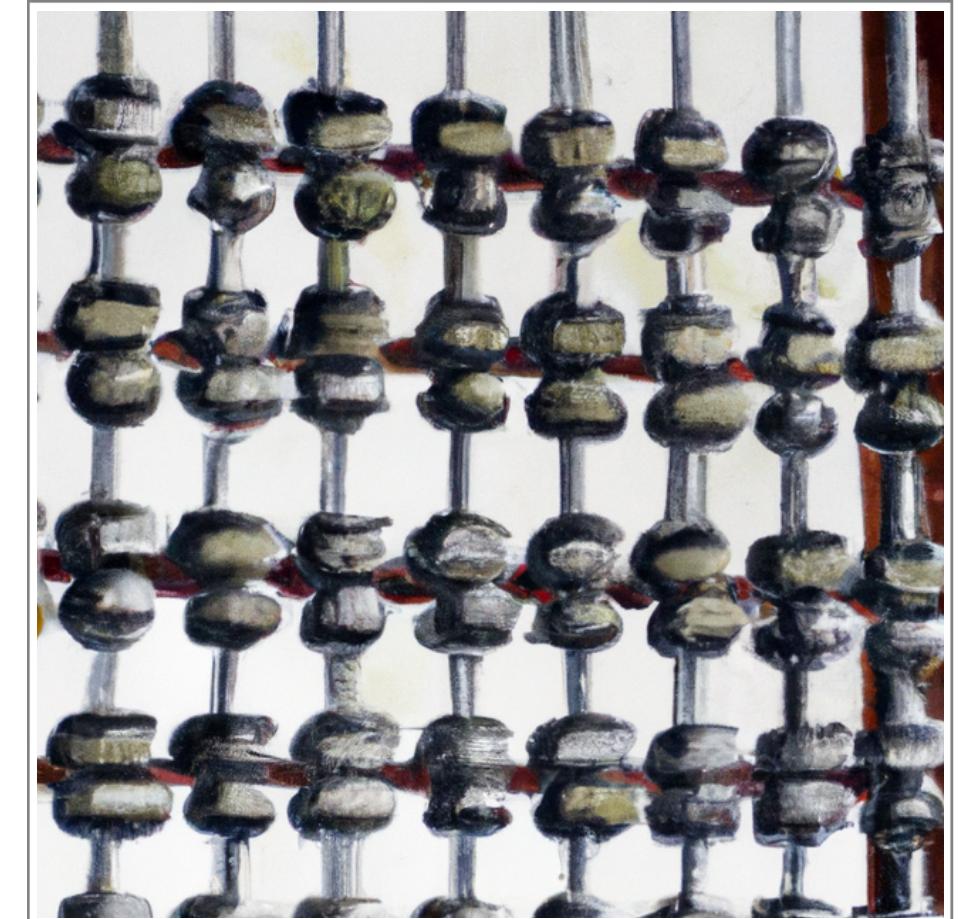
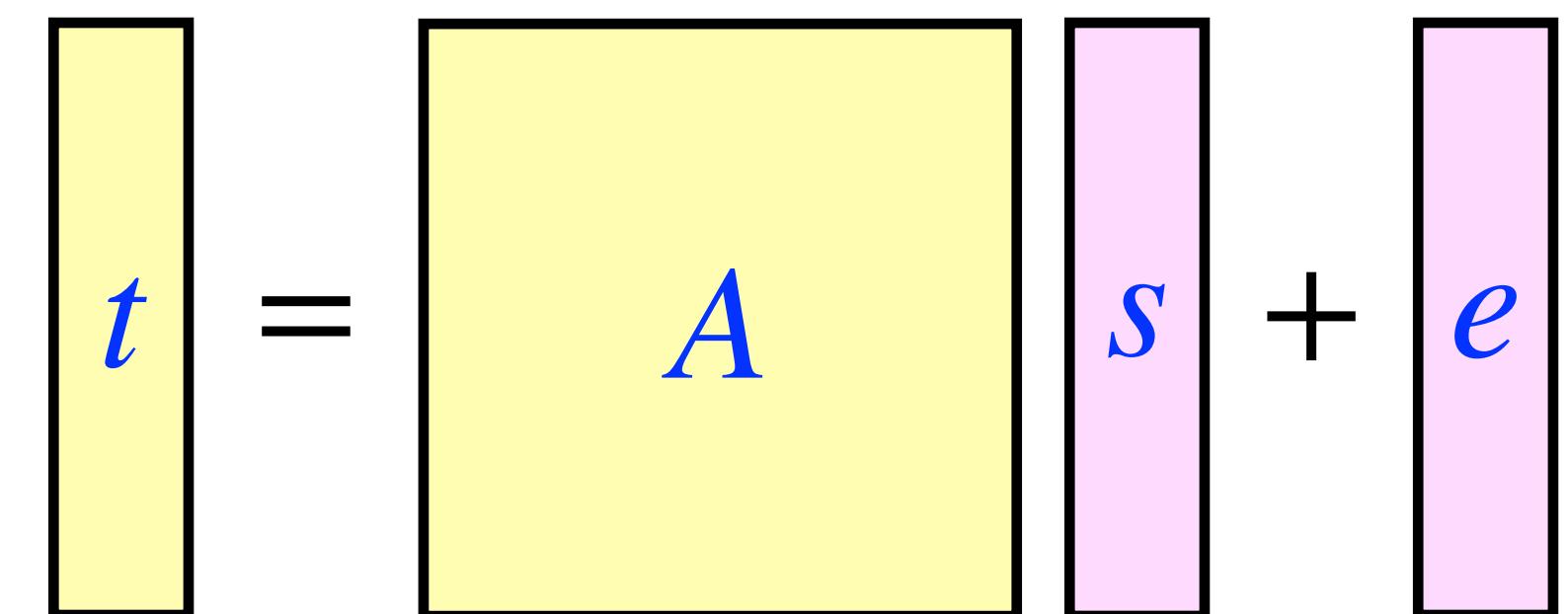
Toy example: Kyber-PKE(s) (1)

- ♦ **Domain parameters:** $q = 137$, $n = 4$, $k = 2$, $\eta_1 = 2$, $\eta_2 = 2$.
- ♦ **Key generation:** Alice selects:

$$A = \begin{bmatrix} 21 + 57x + 78x^2 + 43x^3 & 126 + 122x + 19x^2 + 125x^3 \\ 111 + 9x + 63x^2 + 33x^3 & 105 + 61x + 71x^2 + 64x^3 \end{bmatrix},$$

$$s = \begin{bmatrix} 1 + 2x - x^2 + 2x^3 \\ -x + 2x^3 \end{bmatrix}, \quad e = \begin{bmatrix} 1 - x^2 + x^3 \\ -x + x^2 \end{bmatrix}, \quad \text{and computes}$$

$$t = As + e = \begin{bmatrix} 55 + 96x + 123x^2 + 7x^3 \\ 32 + 27x + 127x^2 + 100x^3 \end{bmatrix}.$$



Alice's **encryption key** is (A, t) ; her **decryption key** is s .

Toy example: Kyber-PKE(s) (2)

- ♦ **Encryption:** To encrypt the plaintext message $m = 0111 \leftrightarrow x + x^2 + x^3$, Bob selects

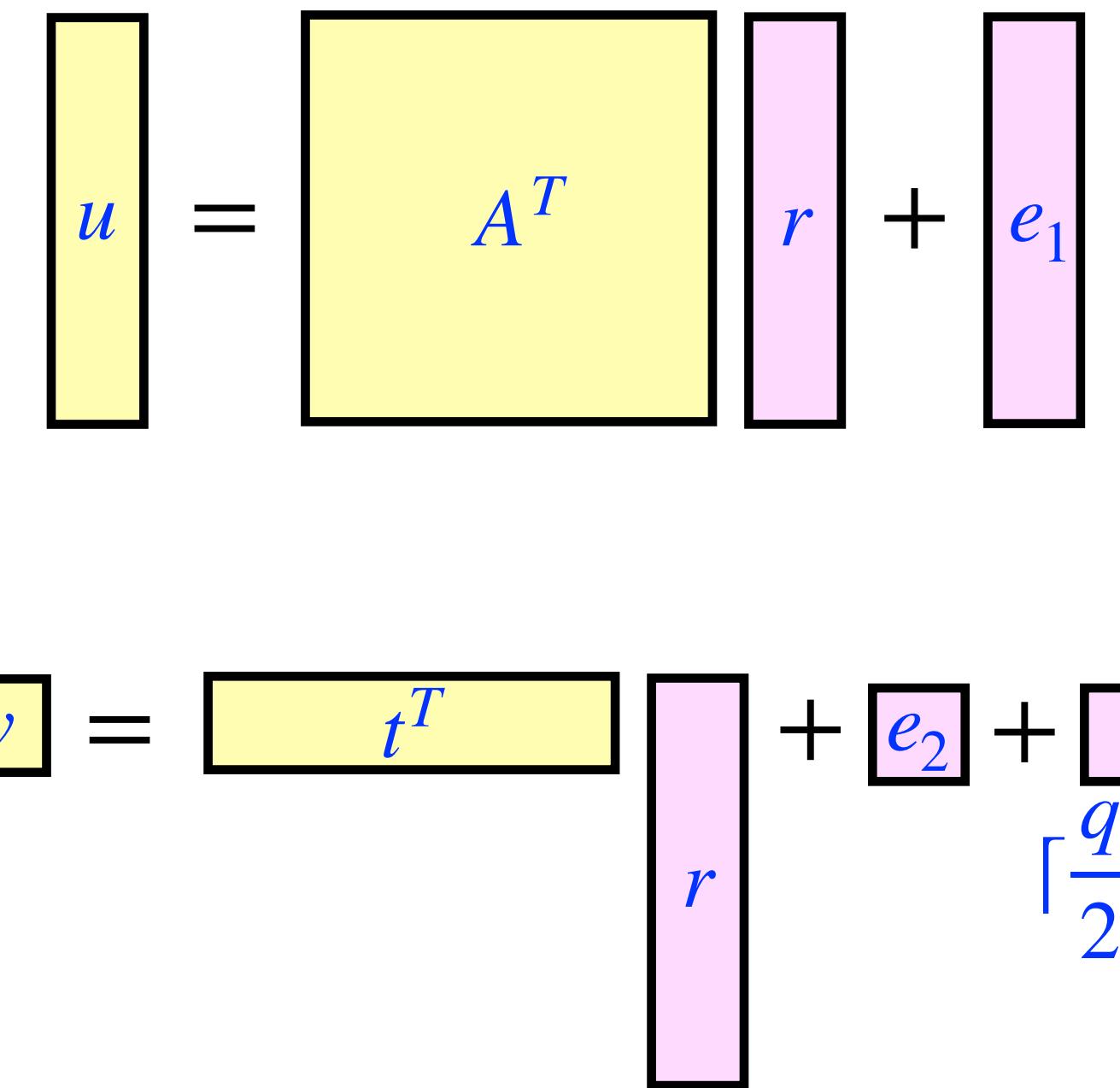
$$r = \begin{bmatrix} -2 + 2x + x^2 - x^3 \\ -1 + x + x^2 \end{bmatrix}, \quad e_1 = \begin{bmatrix} 1 - 2x^2 + x^3 \\ -1 + 2x - 2x^2 + x^3 \end{bmatrix}, \quad e_2 = 2 + 2x - x^2 + x^3,$$

and computes $u = A^T r + e_1 = \begin{bmatrix} 56 + 32x + 77x^2 + 9x^3 \\ 45 + 21x + 2x^2 + 127x^3 \end{bmatrix}$

and $v = t^T r + e_2 + 69m = 3 + 10x + 8x^2 + 123x^3$.

The **ciphertext** is $c = (u, v)$.

- ♦ **Decryption:** To decrypt $c = (u, v)$, Alice uses her decryption key s to compute $v - s^T u = 4 + 60x + 79x^2 + 66x^3$, and then rounds its coefficients to obtain $x + x^2 + x^3$, thereby recovering the **plaintext** $m = 0111$.



Security

- ♦ Claim: Simplified Kyber-PKE(s) is indistinguishable against chosen-plaintext attack assuming that D-MLWE is intractable.

- ♦ Proof: The encryption operation can be written as: $\begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} A^T \\ t^T \end{bmatrix} r + \begin{bmatrix} e_1 \\ e_2 \end{bmatrix} + \begin{bmatrix} 0 \\ \lceil \frac{q}{2} \rceil m \end{bmatrix}.$

By the D-MLWE assumption, $\begin{bmatrix} A^T \\ t^T \end{bmatrix}$ is indistinguishable from random. Again by the

D-MLWE assumption, $\begin{bmatrix} A^T \\ t^T \end{bmatrix} r + \begin{bmatrix} e_1 \\ e_2 \end{bmatrix} = \begin{bmatrix} A^T r + e_1 \\ t^T r + e_2 \end{bmatrix}$ is indistinguishable from random.

Thus, from the adversary's perspective, v appears to be the sum of the random element $(t^T r + e_2)$ in R_q and the message polynomial $\lceil \frac{q}{2} \rceil m$, so the adversary can learn nothing about m . \square

Decryption doesn't always work

- ♦ **Question:** Does decryption work? i.e., does $m = \text{Round}_q(v - s^T u)$?
- ♦ We have
$$\begin{aligned} v - s^T u &= (t^T r + e_2 + \lceil q/2 \rceil m) - s^T u \\ &= (s^T A^T + e^T) r + e_2 + \lceil q/2 \rceil m - s^T (A^T r + e_1) \\ &= s^T A^T r + e^T r + e_2 + \lceil q/2 \rceil m - s^T A^T r - s^T e_1 \\ &= e^T r + e_2 - s^T e_1 + \lceil q/2 \rceil m. \end{aligned}$$
- ♦ Thus, $\text{Round}_q(v - s^T u) = m$ if each coefficient E_i of the **error polynomial** $E(x) = e^T r + e_2 - s^T e_1$ satisfies $-q/4 < E_i \bmod q < q/4$, i.e., $\|E\|_\infty < q/4$.
- ♦ Now, $\|E_i\|_\infty \leq kn\eta_1^2 + \eta_2 + kn\eta_1\eta_2$.
- ♦ For the ML-KEM-768 parameters ($q = 3329, n = 256, k = 3, \eta_1 = \eta_2 = 2$), we have $\|E_i\|_\infty \leq 6146 \not< q/4$. Hence, *decryption is not guaranteed to succeed*.
- ♦ However, it can be shown that $\|E\|_\infty < q/4$ with probability extremely close to 1. Consequently, *decryption will almost certainly succeed*.



V2b: Optimizations

1. Smaller public keys
2. Ciphertext compression
3. Central binomial distribution
4. Fast polynomial multiplication

Encryption key and ciphertext sizes

- ♦ For concreteness, we'll consider the **ML-KEM-768** parameters ($q = 3329$, $n = 256$, $k = 3$, $\eta_1 = 2$, $\eta_2 = 2$).
- ♦ The bitlength of an integer in \mathbb{Z}_q is $\lceil \log_2 3329 \rceil = 12$ bits.
- ♦ **Encryption key:** The size of an encryption key (A, t) is $(9 \times 256 \times 12) + (3 \times 256 \times 12)$ bits, or 4,608 bytes.
- ♦ **Ciphertext:** The size of a ciphertext $c = (u, v)$ is $(3 \times 256 \times 12) + (256 \times 12)$ bits, or 1,536 bytes.

Smaller encryption keys

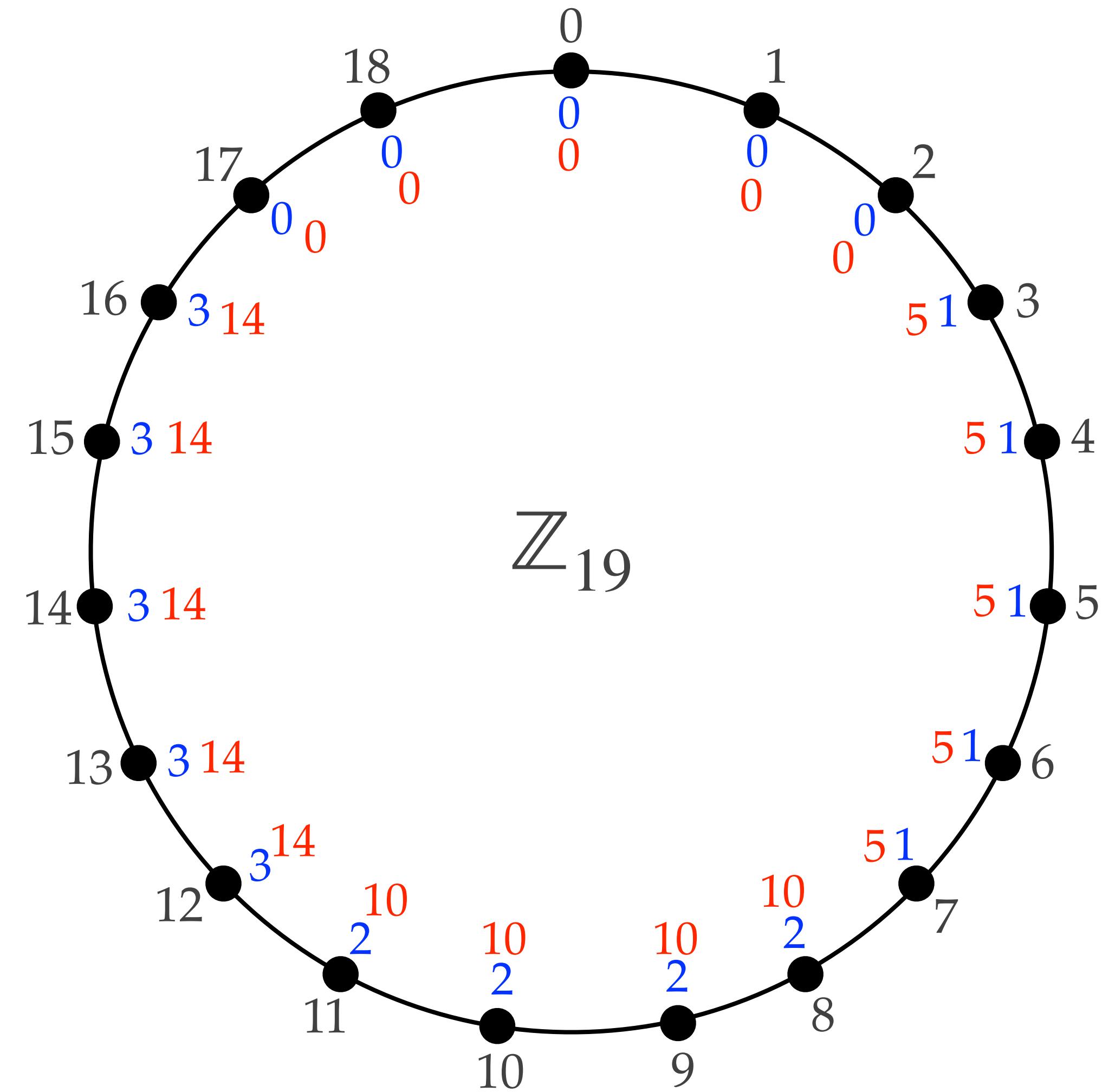
- ◆ **Idea:** Generate A from a random (and public) 256-bit seed ρ .
- ◆ The polynomials in A can be generated by first selecting $\rho \in_R \{0,1\}^{256}$, and then generating the coefficients of the polynomials by hashing ρ with a counter.
- ◆ The encryption key is (ρ, t) instead of (A, t) .
- ◆ Anyone who knows ρ can generate A .
- ◆ The encryption key size is now $256 + (3 \times 256 \times 12)$ bits, or 1,184 bytes (a substantial reduction from 4,608 bytes).

Compression

- ♦ **Idea:** Discard the “low order” bits of the coefficients of all polynomials in the ciphertext $c = (u, v)$.
- ♦ Let $1 \leq d \leq \lfloor \log_2 q \rfloor$, and define:
 - ♦ For $x \in [0, q - 1]$, $\text{Compress}_q(x, d) = \lceil (2^d/q) \cdot x \rceil \bmod 2^d$.
 - ♦ For $y \in [0, 2^d - 1]$, $\text{Decompress}_q(y, d) = \lceil (q/2^d) \cdot y \rceil \bmod q$.
- ♦ **Fact:** Let $x \in [0, q - 1]$ and $x' = \text{Decompress}_q(\text{Compress}_q(x, d), d)$. Then $\|x' - x\|_\infty \leq \lceil q/2^{d+1} \rceil$.
- ♦ The functions Compress and Decompress extend in the natural way to polynomials in R_q and polynomial vectors in R_q^k .

Examples: compression and decompression (1)

- ◆ Let $q = 19$ and $d = 2$.
- ◆ Let $x \in [0, 18]$.
- ◆ Let $y = \text{Compress}_{19}(x, 2)$.
- ◆ Let $x' = \text{Decompress}(y, 2)$.
- ◆ Then $\|x' - x\|_\infty \leq 2$.



Examples: compression and decompression (2)

- ♦ Let $q = 3329$, $d = 10$, $x \in [0, q - 1]$.
- ♦ Let $x' = \text{Decompress}_q(\text{Compress}_q(x, d), d)$.
- ♦ Then $| (x - x') \bmod q | \leq 2$.
- ♦ Example:
 - ♦ $\text{Compress}_q(223 + 1438x + 3280x^2 + 798x^3, 10) = 69 + 442x + 1009x^2 + 245x^3$.
 - ♦ $\text{Decompress}_q(69 + 442x + 1009x^2 + 245x^3, 10) = 224 + 1437x + 3280x^2 + 796x^3$.
 - ♦ The error polynomial is $-1 + x + 2x^3$.

Examples: compression and decompression (3)

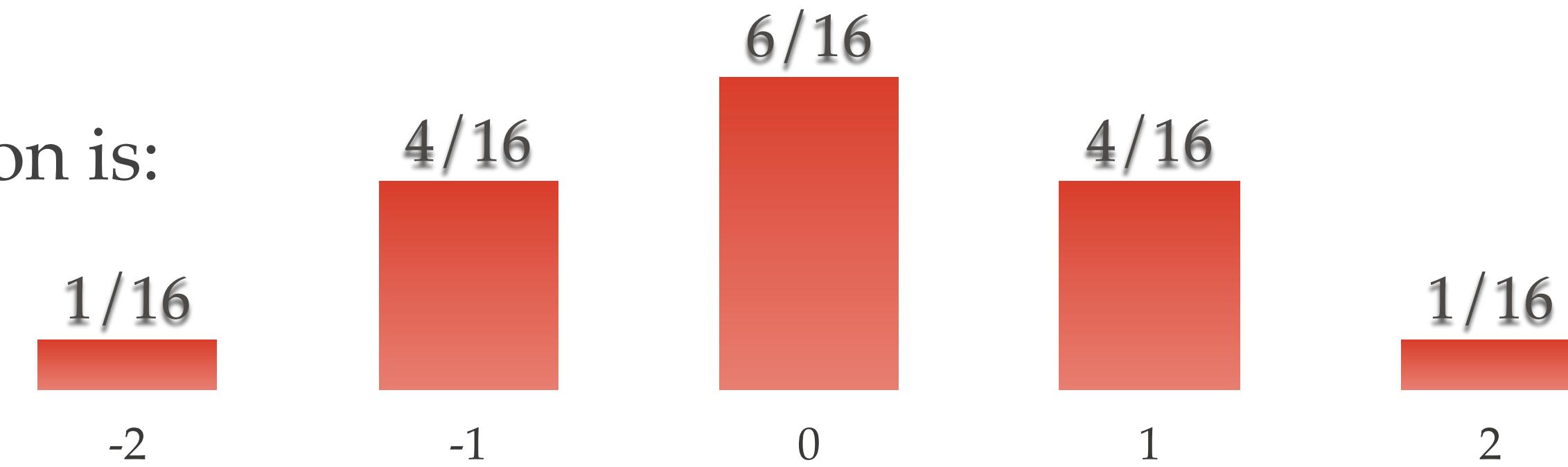
- ♦ Let $q = 3329$, $d = 4$, $x \in [0, q - 1]$.
- ♦ Let $x' = \text{Decompress}_q(\text{Compress}_q(x, d), d)$.
- ♦ Then $| (x - x') \bmod q | \leq 104$.
- ♦ Example:
 - ♦ $\text{Compress}_q(223 + 1438x + 3280x^2 + 798x^3, 4) = 1 + 7x + 4x^3$.
 - ♦ $\text{Decompress}_q(1 + 7x + 4x^3, 4) = 208 + 1456x + 832x^3$.
 - ♦ The error polynomial is $15 - 18x - 49x^2 - 34x^3$.

Ciphertext compression

- ♦ The ciphertext components u and v are replaced by $c_1 = \text{Compress}_q(u, d_u)$ and $c_2 = \text{Compress}_q(v, d_v)$.
- ♦ The **ML-KEM-768** parameters ($q = 3329, n = 256, k = 3, \eta_1 = 2, \eta_2 = 2$) have $d_u = 10$ and $d_v = 4$.
- ♦ So, the size of the compressed ciphertext is $3 \times 256 \times 10 + 256 \times 4$ bits, or 1,088 bytes (a significant reduction from 1,536 bytes).

Central binomial distribution

- ♦ **Idea:** A polynomial can be selected uniformly at random from S_η by selecting each of its coefficients uniformly at random from $[-\eta, \eta]$. To simplify this, the coefficients c are drawn instead according to a **central binomial distribution** (CBD) as follows.
- ♦ Select η pairs of bits (a_i, b_i) (with $1 \leq i \leq \eta$) uniformly at random, and output $c = \sum_{i=1}^{\eta} (a_i - b_i)$. Note that $c \in [-\eta, \eta]$.
- ♦ In fact, for each $j \in [-\eta, \eta]$, $\Pr(c = j) = \binom{2\eta}{\eta+j} / 2^{2\eta}$; this is the CBD.
- ♦ **Example:** For $\eta = 2$, the central binomial distribution is:



Fast polynomial multiplication

- ♦ The computation times for encryption and decryption is dominated by the time to multiply polynomials in $R_q = \mathbb{Z}_{3329}[x]/(x^{256} + 1)$.
- ♦ The multiplication can be sped up considerably by using the **Number-Theoretic Transform** (NTT), which will be covered in V4.

V2c: Kyber-PKE (full)

1. Domain parameters and key generation
2. Encryption and decryption
3. Decryption doesn't always work
4. Security

Domain parameters and key generation

For concreteness, we'll use the ML-KEM-768 domain parameters:

- ◆ $q = 3329$
- ◆ $n = 256$
- ◆ $k = 3$
- ◆ $\eta_1 = 2$ and $\eta_2 = 2$
- ◆ $d_u = 10$ and $d_v = 4$

Kyber-PKE key generation: Alice does:

1. Select $\rho \in_R \{0,1\}^{256}$ and compute $A = \text{Expand}(\rho)$, where $A \in R_q^{k \times k}$.
2. Select $s \in_{CBD} S_{\eta_1}^k$ and $e \in_{CBD} S_{\eta_1}^k$.
3. Compute $t = As + e$.
4. Alice's encryption (public) key is (ρ, t) ; her decryption (private) key is s .

Encryption and decryption

Kyber-PKE encryption: To encrypt a message $m \in \{0,1\}^n$ for Alice, Bob does:

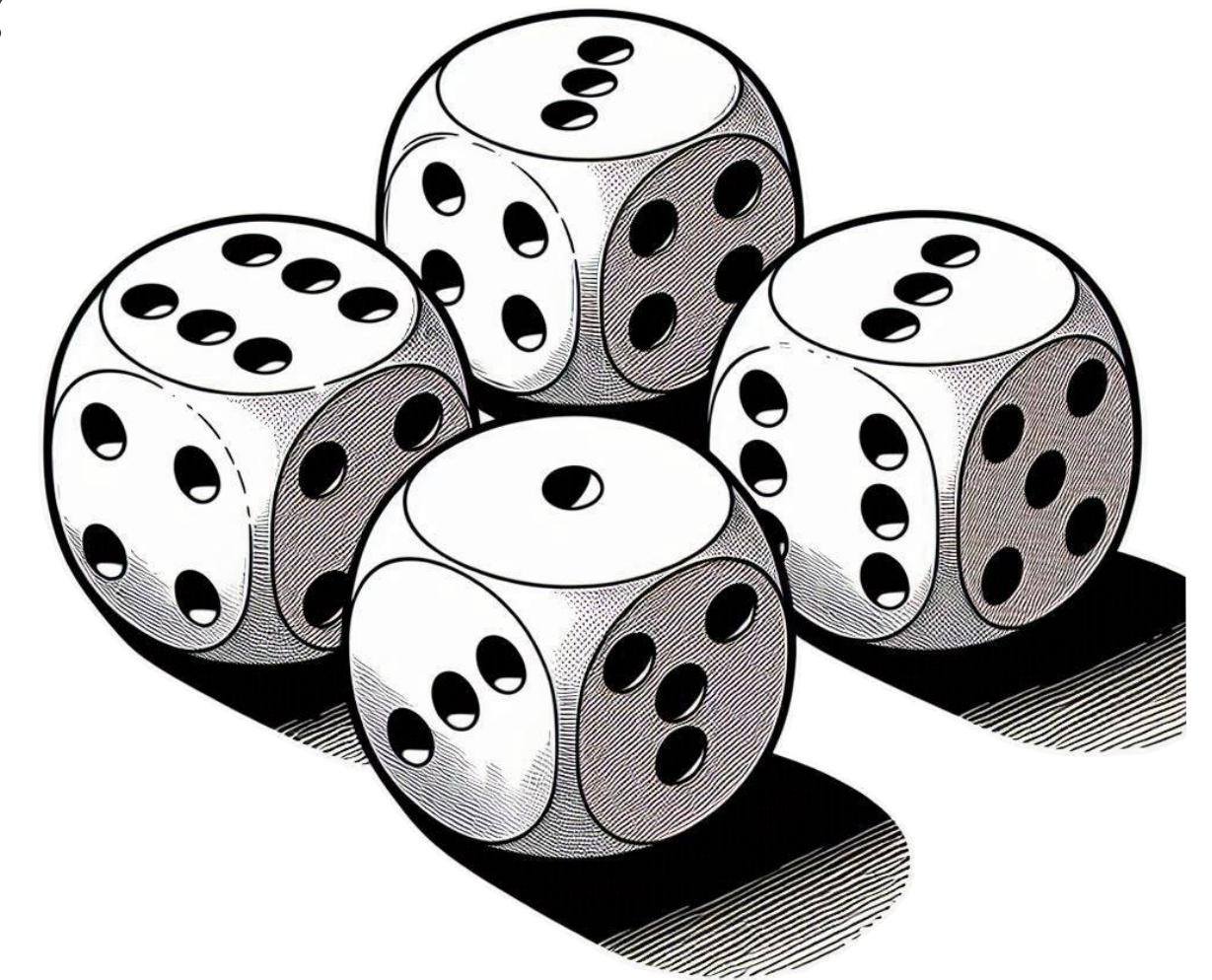
1. Obtain an authentic copy of Alice's encryption key (ρ, t) and compute $A = \text{Expand}(\rho)$.
2. Select $r \in_{CBD} S_{\eta_1}^k$, $e_1 \in_{CBD} S_{\eta_2}^k$, and $e_2 \in_{CBD} S_{\eta_2}$.
3. Compute $u = A^T r + e_1$ and $v = t^T r + e_2 + \lceil \frac{q}{2} \rceil m$.
4. Compute $c_1 = \text{Compress}_q(u, d_u)$ and $c_2 = \text{Compress}_q(v, d_v)$.
5. Output $c = (c_1, c_2)$.

Kyber-PKE decryption: To decrypt $c = (c_1, c_2)$, Alice does:

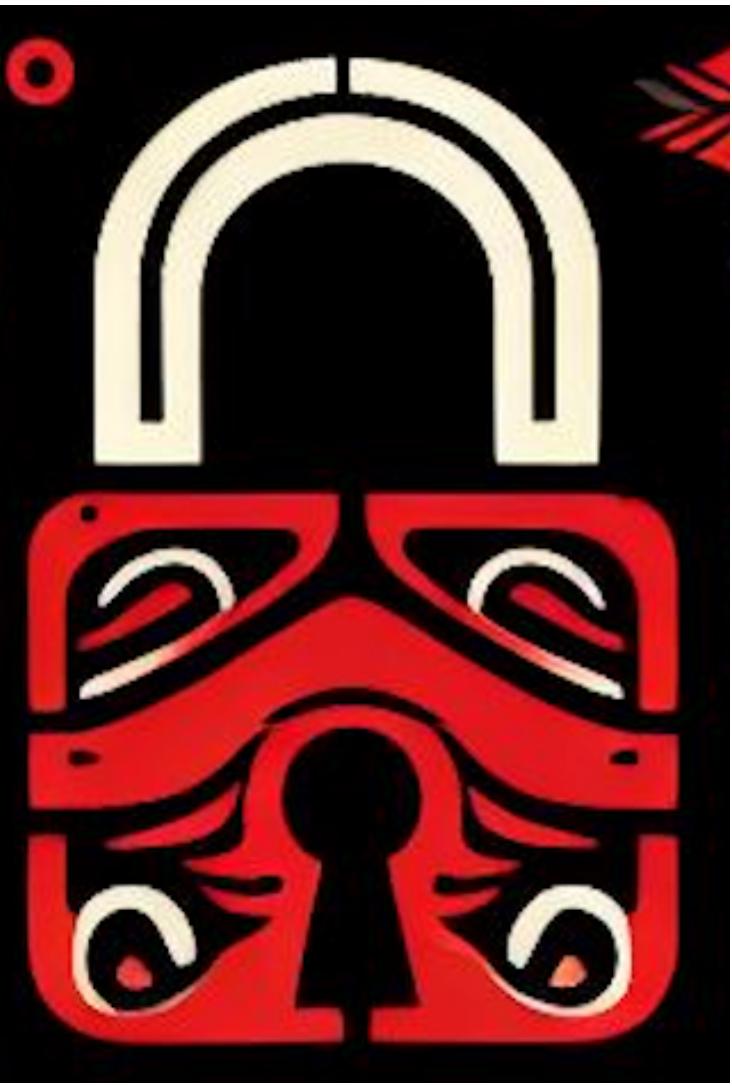
1. Compute $u' = \text{Decompress}_q(c_1, d_u)$ and $v' = \text{Decompress}_q(c_2, d_v)$.
2. Compute $m = \text{Round}_q(v' - s^T u')$.

Decryption doesn't always work

- ♦ **Question:** Does decryption work? i.e., does $m = \text{Round}_q(v' - s^T u')$?
- ♦ Let $u' = u + e_u$ and $v' = v + e_v$.
- ♦ We have
$$\begin{aligned} v' - s^T u' &= (v + e_v) - s^T(u + e_u) \\ &= v - s^T u + e_v - s^T e_u \\ &= e^T r + e_2 - s^T e_1 + e_v - s^T e_u + \lceil q/2 \rceil m. \end{aligned}$$
- ♦ Thus, $\text{Round}_q(v' - s^T u') = m$ if each coefficient E_i of the **error polynomial** $E(x) = e^T r + e_2 - s^T e_1 + e_v - s^T e_u$ satisfies $-q/4 < E_i \bmod q < q/4$, i.e., $\|E\|_\infty < q/4$.
- ♦ For the ML-KEM-768 parameters $|E_i| \not< q/4$ and hence *decryption is not guaranteed to succeed*.
- ♦ However, it can be shown that $\|E\|_\infty < q/4$ with probability extremely close to 1. Consequently, *decryption will almost certainly succeed*.



Security



- ♦ Ciphertext compression doesn't affect the security of Kyber-PKE. Consequently, the following claim holds:
- ♦ Claim: Kyber-PKE is indistinguishable against chosen-plaintext attack assuming that D-MLWE is intractable.
- ♦ Note: Kyber-PKE is *not* intended for stand-alone use.

V2d: Kyber-KEM

1. Key encapsulation mechanisms
2. Kyber-KEM
3. Parameter sets
4. Omitted details

Key encapsulation mechanisms

- ♦ A **key encapsulation mechanism** (KEM) allows two parties to establish a shared secret key.
- ♦ A KEM is comprised of three algorithms:
 1. **Key generation**: Each user, say Alice, uses this algorithm to generate an **encapsulation key** ek (public key) and a **decapsulation key** dk (the private key).
 2. **Encapsulation**: Bob uses Alice's encapsulation key ek to generate a secret key K and ciphertext c , and sends c to Alice.
 3. **Decapsulation**: Alice uses her decapsulation key dk to recover K from the ciphertext c .

Kyber-KEM

- ♦ Kyber-KEM is derived by applying (a slight modification) of the “Fujisaki-Okamoto” (FO) transform to Kyber-PKE.
- ♦ The FO transform is a generic method for converting a public-key encryption scheme that is secure against chosen-plaintext attacks to one that is secure against chosen-ciphertext attacks.
- ♦ The transform uses three hash functions:
 $G : \{0,1\}^* \longrightarrow \{0,1\}^{512}$, $H : \{0,1\}^* \longrightarrow \{0,1\}^{256}$, and
 $J : \{0,1\}^* \longrightarrow \{0,1\}^{256}$.

Fujisaki-Okamoto transform

- ♦ **Encapsulation:** Kyber-PKE is used to encrypt a randomly selected $m \in \{0,1\}^{256}$.
 - ♦ **Derandomization:** m and the encapsulation key ek are hashed to produce a random seed R and the secret key K . The random polynomials r , e_1 and e_2 needed for encryption are derived from R .
- ♦ **Decapsulation:** The intended recipient decrypts the Kyber-PKE ciphertext c to recover m' , and then hashes m' and ek to obtain R' and K' . She then re-encrypts m' (using R') and compares the resulting ciphertext c' with c .
 - ♦ If $c = c'$, she accepts K' ; otherwise, she outputs a random key \bar{K} (which is independent of K) obtained by hashing c and a secret z .
- ♦ Kyber-KEM has **plaintext awareness**, i.e., decapsulation will produce K (and not \bar{K}) only if the entity who performed the encapsulation already knows K .
 - ♦ This provides resistance to **chosen-ciphertext attacks**.

Domain parameters and key generation

For concreteness, we'll use the ML-KEM-768 **domain parameters**:

- ◆ $q = 3329$
- ◆ $n = 256$
- ◆ $k = 3$
- ◆ $\eta_1 = 2$ and $\eta_2 = 2$
- ◆ $d_u = 10$ and $d_v = 4$

Kyber-KEM key generation: Alice does:

1. Use the Kyber-PKE key generation algorithm to select a Kyber-PKE encryption key (ρ, t) and decryption key s .
2. Select $z \in_R \{0,1\}^{256}$.
3. Alice's **encapsulation key** is $ek = (\rho, t)$; her **decapsulation key** is $dk = (s, ek, H(ek), z)$.

Encapsulation and decapsulation

Kyber-KEM encapsulation: To establish a shared secret key with Alice, Bob does:

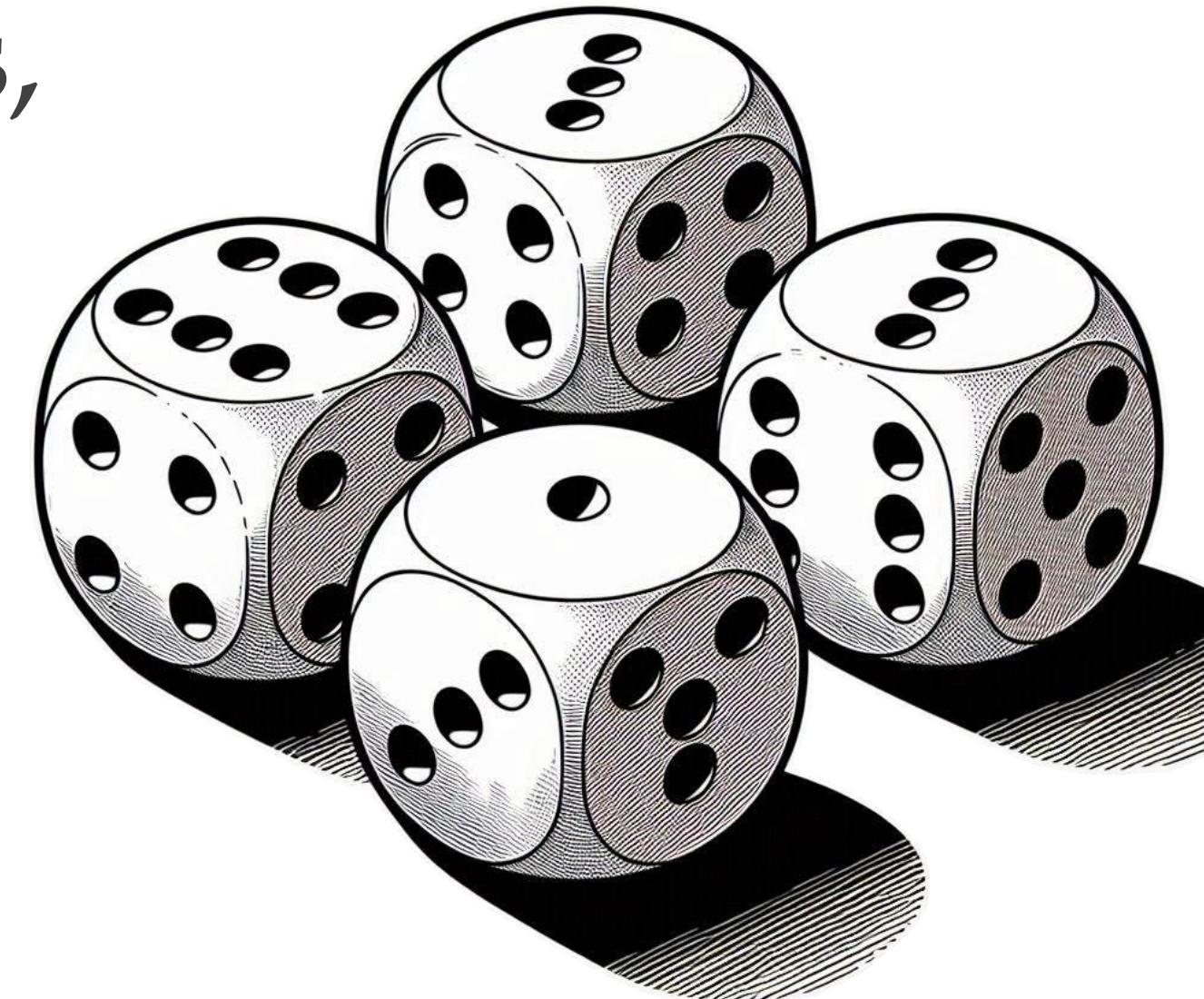
1. Obtain an authentic copy of Alice's encapsulation key ek .
2. Select $m \in_R \{0,1\}^{256}$.
3. Compute $h = H(ek)$ and $(K, R) = G(m, h)$, where $K, R \in \{0,1\}^{256}$.
4. Use the Kyber-PKE encryption algorithm to encrypt m with encryption key ek , and using R to generate the random quantities needed; call the resulting ciphertext c .
5. Output the secret key K and ciphertext c .

Kyber-KEM decapsulation: To recover the secret key K from c using $dk = (s, ek, H(ek), z)$, Alice does:

1. Use the Kyber-PKE decryption algorithm to decrypt c using decryption key s ; call the resulting plaintext m' .
2. Compute $(K', R') = G(m', H(ek))$.
3. Compute $\bar{K} = J(z, c)$.
4. Use the Kyber-PKE encryption algorithm to encrypt m' with encryption key ek , and using R' to generate the random quantities needed; call the resulting ciphertext c' .
5. If $c \neq c'$ then return(\bar{K}).
6. Return(K').

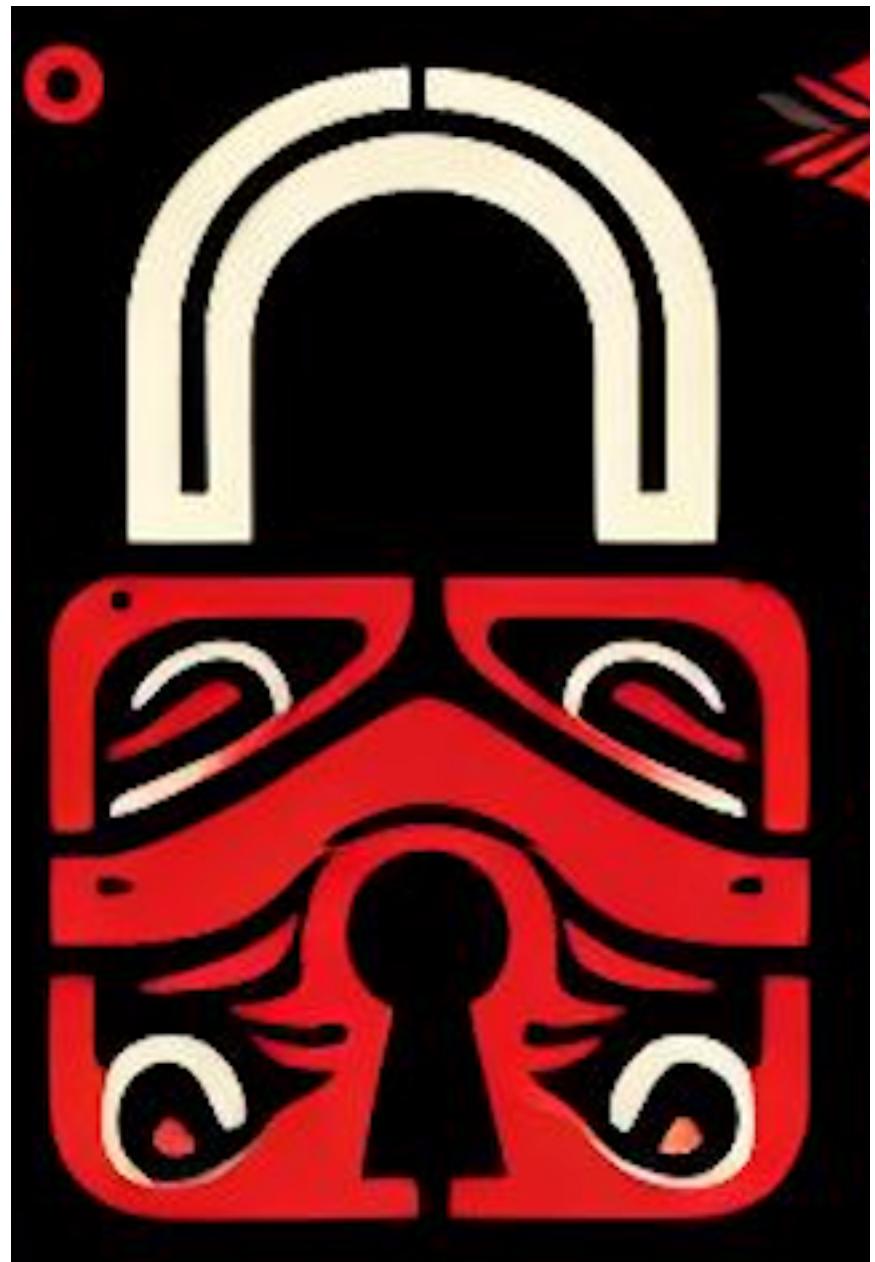
Decapsulation failure

- ♦ Decapsulation **fails** when $c \neq c'$, whereby the key \bar{K} that is outputted is (almost certainly) different from the key K that was encapsulated.
- ♦ This can occur even if the communicating parties, Alice and Bob, behave honestly since there is a (very small) probability that there is a failure in the underlying Kyber-PKE (whereby $m' \neq m$).
- ♦ It can be shown that the decapsulation failure rate is negligible.



Security

- ◆ Kyber-KEM is **indistinguishable against chosen-ciphertext attacks** assuming that D-MLWE is intractable, and G, H, J are random functions.
- ◆ Kyber-KEM is also indistinguishable against a chosen-ciphertext attack by a **quantum adversary** who is able to make both classical queries and quantum queries (in superposition) to G, H and J .



Parameter sets

	Security category	q	n	k	η_1	η_2	d_u	d_v	encaps. key size (bytes)	ciphertext size (bytes)	decapsulation failure rate
ML-KEM-512	1	3329	256	2	3	2	10	4	800	768	$< 2^{-139}$
ML-KEM-768	3	3329	256	3	2	2	10	4	1184	1088	$< 2^{-164}$
ML-KEM-1024	5	3329	256	4	2	2	11	5	1568	1568	$< 2^{-174}$

Categories 1, 3, 5: Fastest known attacks require at least as much resources as needed for exhaustive key search on, respectively, a 128-bit, 192-bit, and 256-bit block cipher.

Omitted details

- ♦ **Formatting** for bit strings and byte strings.
- ♦ **Hash functions:**
 - ♦ G is SHA3-512, H is SHA3-256, J is SHAKE256 (see FIPS 202).
- ♦ **eXtendable Output Function** (XOF) used to generate A .
 - ♦ SHAKE128 is used.
- ♦ **PseudoRandom Function** (PRF) used to generate s, e, r, e_1, e_2 .
 - ♦ SHAKE256 is used.
- ♦ **Number-Theoretic Transform** (NTT)
 - ♦ for fast polynomial multiplication in $R_q = \mathbb{Z}_{3329}[x]/(x^{256} + 1)$ (see V4b).

FIPS PUB 202

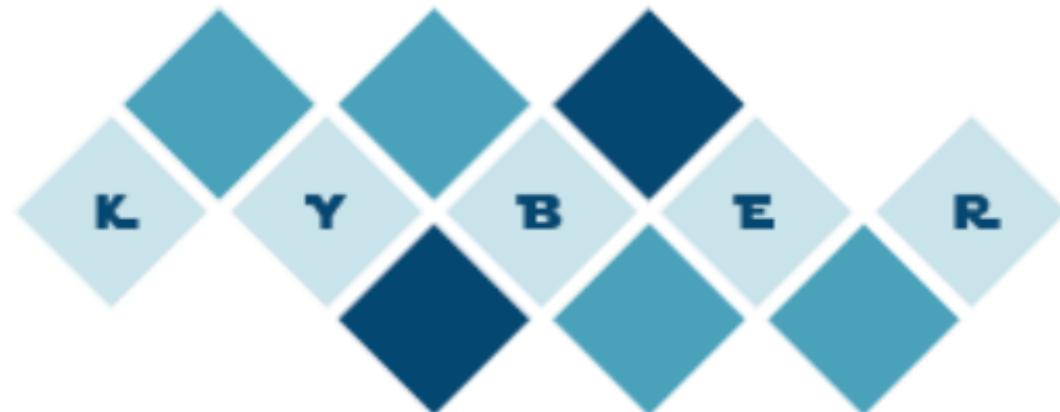
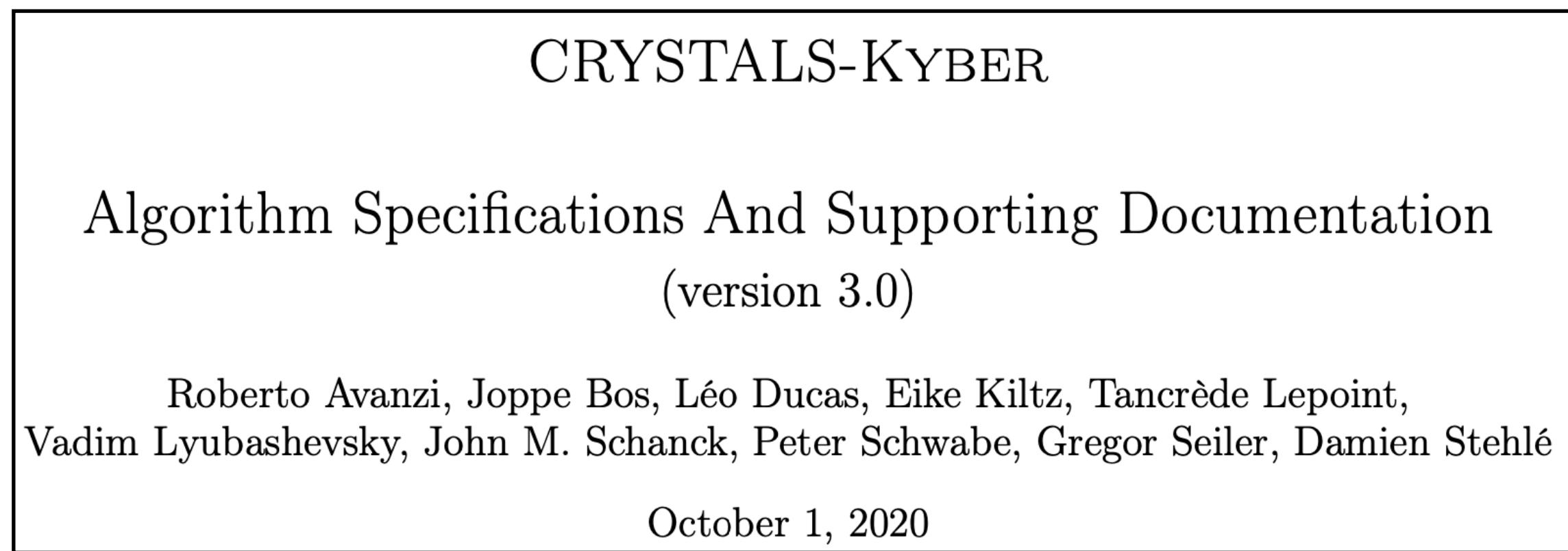
**FEDERAL INFORMATION PROCESSING STANDARDS
PUBLICATION**

**SHA-3 Standard: Permutation-Based Hash and
Extendable-Output Functions**

References

CRYSTALS – Kyber: a CCA-secure module-lattice-based KEM

Joppe Bos*, Léo Ducas†, Eike Kiltz‡, Tancrede Lepoint§, Vadim Lyubashevsky¶,
John M. Schanck||, Peter Schwabe**, Gregor Seiler††, Damien Stehlé‡‡,



pq-crystals.org/kyber

csrc.nist.gov/pubs/fips/203/final

FIPS 203

Federal Information Processing Standards Publication

Module-Lattice-Based
Key-Encapsulation Mechanism Standard