
Kyber and
Dilithium

© Alfred Menezes

V2: The Kyber PKE and KEM

 August 2024

V2: Overview Kyber and Dilithium © Alfred Menezes

Kyber

43

✦ Kyber is a quantum-safe
Key Encapsulation Mechanism
(KEM).

✦ Standardized by NIST in FIPS 203,
where it is called ML-KEM
(Module-Lattice-based KEM).

✦ Kyber-KEM was designed by
applying the Fujisaki-Okamoto
transform to a public-key
encryption scheme (Kyber-PKE).

V2: Overview Kyber and Dilithium © Alfred Menezes

V2 outline

44

✦ V2a: Kyber-PKE (simplified)
✦ V2b: Optimizations
✦ V2c: Kyber-PKE (full scheme)
✦ V2d: Kyber-KEM

V2a: Kyber-PKE (simplified) Kyber and Dilithium © Alfred Menezes

V2a: Kyber-PKE (simplified)

45

1. Rounding

2. Domain parameters and key
generation

3. Encryption and decryption

4. Security

5. Decryption doesn’t always work

V2a: Kyber-PKE (simplified) Kyber and Dilithium © Alfred Menezes

Notation
✦ Recall:

✦ .
✦ = set of polynomials in with (mods) coefficients in .
✦ ,

✦ The plaintext space is .
A plaintext is associated with a polynomial in with 0-1 coefficients.

✦ Example: If and , then .
✦ is the largest integer , and is the smallest integer .

✦ Example: and , whereas and
✦ denotes the closest integer to , with ties broken upwards.

✦ Example: , , , , and
.

Rq = →q[x]/(xn + 1)
Sℓ Rq q [⟶ℓ, ℓ]
Rk

q Sk
ℓ

{0,1}n

m ∈ {0,1}n Rq

n = 5 m = 10110 m ≤ m(x) = 1 + x2 + x3

×xℤ ≥ x ≡x− ⋯ x
×5.25ℤ = 5 ×⟶5.25ℤ = ⟶ 6 ≡5.25− = 6 ≡⟶5.25− = ⟶ 5.

≡xℤ x
≡13.3ℤ = 13 ≡13.5ℤ = 14 ≡13.7ℤ = 14 ≡⟶13.5ℤ = ⟶ 13

≡⟶13.7ℤ = ⟶ 14

46

V2a: Kyber-PKE (simplified) Kyber and Dilithium © Alfred Menezes

Rounding
✦ Let be an odd prime, and let .
✦ Let ; recall that .

✦ Then

✦ Example: Let .

Then

✦ The operation can be extended to polynomials in
by applying it to each coefficient of the polynomial.

✦ Example: Let . Then
.

q x ∈ [0, q ⟶ 1]
x⋅ = x mods q x⋅ ∈ [⟶ (q ⟶ 1)/2, (q ⟶ 1)/2]

Roundq(x) = {0, if ⟶q/4 < x⋅ < q/4,
1, otherwise .

q = 3329
Roundq(x) = {0, if ⟶832 ≥ x⋅ ≥ 832,

1, otherwise .
Roundq Rq

q = 3329
Roundq(3000 + 1500x + 2010x2 + 37x3) = x + x2

47

→q

0
1

2
-1

-2

≡ ⟶q
4 −

≡ q
4 −

× q
4 ℤ

× ⟶q
4 ℤ

q ⟶ 1
2

⟶ (q ⟶ 1)
2

q
2

q
4⟶ q

4

0

1

V2a: Kyber-PKE (simplified) Kyber and Dilithium © Alfred Menezes

Domain parameters and key generation

48

For concreteness, we’ll use
the ML-KEM-768 domain
parameters:

✦

✦

✦

✦

✦

q = 3329
n = 256
k = 3
ℓ1 = 2
ℓ2 = 2

Kyber-PKE(s) key generation: Alice does:

1. Select , , and .

2. Compute .

3. Alice’s encryption (public) key is ;
her decryption (private) key is .

Note: Computing from is an instance of
MLWE.

A ∈R Rk∥k
q s ∈R Sk

ℓ1
e ∈R Sk

ℓ1

t = As + e

(A, t)
s

s (A, t)

V2a: Kyber-PKE (simplified) Kyber and Dilithium © Alfred Menezes

Encryption and decryption

49

Kyber-PKE(s) encryption: To encrypt a message
 for Alice, Bob does:

1. Obtain an authentic copy of Alice’s encryption
key .

2. Select , , and .

3. Compute and .

4. Output .

Note: .

m ∈ {0,1}n

(A, t)
r ∈R Sk

ℓ1
e1 ∈R Sk

ℓ2
e2 ∈R Sℓ2

u = ATr + e1 v = tTr + e2 + ≡ q
2 ℤm

c = (u, v)
c ∈ Rk

q ∥ Rq

Kyber-PKE(s) decryption:
To decrypt , Alice
does:

1. Compute
.

Note: Alice uses her
decryption key .

c = (u, v)

m = Roundq(v ⟶ sTu)

s

V2a: Kyber-PKE (simplified) Kyber and Dilithium © Alfred Menezes

Toy example: Kyber-PKE(s) (1)
✦ Domain parameters: , , , , .
✦ Key generation: Alice selects:

,

, , and computes

.

Alice’s encryption key is ; her decryption key is .

q = 137 n = 4 k = 2 ℓ1 = 2 ℓ2 = 2

A = [21 + 57x + 78x2 + 43x3 126 + 122x + 19x2 + 125x3

111 + 9x + 63x2 + 33x3 105 + 61x + 71x2 + 64x3]
s = [1 + 2x ⟶ x2 + 2x3

⟶x + 2x3] e = [1 ⟶ x2 + x3

⟶x + x2]
t = As + e = [55 + 96x + 123x2 + 7x3

32 + 27x + 127x2 + 100x3]
(A, t) s

50

t A es= +

V2a: Kyber-PKE (simplified) Kyber and Dilithium © Alfred Menezes

Toy example: Kyber-PKE(s) (2)
✦ Encryption: To encrypt the plaintext message , Bob selects

, , ,

and computes

and .
The ciphertext is .

✦ Decryption: To decrypt , Alice uses her decryption
key to compute , and
then rounds its coefficients to obtain , thereby
recovering the plaintext .

m = 0111 ≤ x + x2 + x3

r = [⟶2 + 2x + x2 ⟶ x3

⟶1 + x + x2] e1 = [1 ⟶ 2x2 + x3

⟶1 + 2x ⟶ 2x2 + x3] e2 = 2 + 2x ⟶ x2 + x3

u = ATr + e1 = [56 + 32x + 77x2 + 9x3

45 + 21x + 2x2 + 127x3]
v = tTr + e2 + 69m = 3 + 10x + 8x2 + 123x3

c = (u, v)
c = (u, v)

s v ⟶ sTu = 4 + 60x + 79x2 + 66x3

x + x2 + x3

m = 0111
51

= +ATu r e1

= +tTv

r

e2 +
≡ q

2 ℤm

V2a: Kyber-PKE (simplified) Kyber and Dilithium © Alfred Menezes

Security
✦ Claim: Simplified Kyber-PKE(s) is indistinguishable against

chosen-plaintext attack assuming that D-MLWE is intractable.

✦ Proof: The encryption operation can be written as: .

By the D-MLWE assumption, is indistinguishable from random. Again by the

D-MLWE assumption, is indistinguishable from random.

Thus, from the adversary’s perspective, appears to be the sum of the random
element () in and the message polynomial , so the adversary can

learn nothing about .

[u
v] = [AT

tT] r + [e1
e2] + [

0
≡ q

2 ℤm]
[AT

tT]
[AT

tT] r + [e1
e2] = [ATr + e1

tTr + e2]
v

tTr + e2 Rq ≡ q
2 ℤm

m ∞

52

V2a: Kyber-PKE (simplified) Kyber and Dilithium © Alfred Menezes

Decryption doesn’t always work
✦ Question: Does decryption work? i.e., does

✦

✦ Thus, if each coefficient of the error polynomial
satisfies , i.e., .

✦ Now, .
✦ For the ML-KEM-768 parameters (, , ,), we have

. Hence, decryption is not guaranteed to succeed.
✦ However, it can be shown that with probability extremely close to 1.

Consequently, decryption will almost certainly succeed.

m = Roundq(v ⟶ sTu)?

We have v ⟶ sTu = (tTr + e2 + ≡q/2ℤm) ⟶ sTu
= (sT AT + eT)r + e2 + ≡q/2ℤm ⟶ sT(ATr + e1)
= sT ATr + eTr + e2 + ≡q/2ℤm ⟶ sT ATr ⟶ sTe1
= eTr + e2 ⟶ sTe1 + ≡q/2ℤm .

Roundq(v ⟶ sTu) = m Ei E(x) = eTr + e2 ⟶ sTe1
⟶q/4 < Ei mods q < q/4 □E□≪ < q/4

□Ei□≪ ≥ knℓ2
1 + ℓ2 + knℓ1ℓ2

q = 3329 n = 256 k = 3 ℓ1 = ℓ2 = 2
□Ei□≪ ≥ 6146 ↔ q/4

□E□≪ < q/4

53

V2b: Optimizations Kyber and Dilithium © Alfred Menezes

V2b: Optimizations

54

1. Smaller public keys

2. Ciphertext compression

3. Central binomial distribution

4. Fast polynomial multiplication

V2b: Optimizations Kyber and Dilithium © Alfred Menezes

Encryption key and ciphertext sizes

55

✦ For concreteness, we’ll consider the ML-KEM-768
parameters (, , , ,).

✦ The bitlength of an integer in is = 12 bits.

✦ Encryption key: The size of an encryption key is
 bits, or 4,608 bytes.

✦ Ciphertext: The size of a ciphertext is
 bits, or 1,536 bytes.

q = 3329 n = 256 k = 3 ℓ1 = 2 ℓ2 = 2
→q ≡log2 3329−

(A, t)
(9 ∥ 256 ∥ 12) + (3 ∥ 256 ∥ 12)

c = (u, v)
(3 ∥ 256 ∥ 12) + (256 ∥ 12)

V2b: Optimizations Kyber and Dilithium © Alfred Menezes

Smaller encryption keys

56

✦ Idea: Generate from a random (and public) 256-bit seed .

✦ The polynomials in can be generated by first selecting
, and then generating the coefficients of the

polynomials by hashing with a counter.

✦ The encryption key is instead of .

✦ Anyone who knows can generate .

✦ The encryption key size is now bits,
or 1,184 bytes (a substantial reduction from 4,608 bytes).

A η
A

η ∈R {0,1}256

η
(η, t) (A, t)

η A
256 + (3 ∥ 256 ∥ 12)

V2b: Optimizations Kyber and Dilithium © Alfred Menezes

Compression

57

✦ Smaller public keys

✦ Idea: Discard the “low order” bits of the coefficients of all polynomials in
the ciphertext .

✦ Let , and define:

✦ For , .

✦ For , .

✦ Fact: Let and .
Then .

✦ The functions Compress and Decompress extend in the natural way to
polynomials in and polynomial vectors in .

c = (u, v)
1 ≥ d ≥ ×log2 qℤ

x ∈ [0, q ⟶ 1] Compressq(x, d) = ≡(2d /q) ⌊ xℤ mod 2d

y ∈ [0, 2d ⟶ 1] Decompressq(y, d) = ≡(q/2d) ⌊ yℤ mod q
x ∈ [0, q ⟶ 1] x⋅ = Decompressq(Compressq(x, d), d)

□x⋅ ⟶ x□≪ ≥ ≡q/2d+1ℤ

Rq Rk
q

V2b: Optimizations Kyber and Dilithium © Alfred Menezes

Examples: compression and decompression (1)

58

✦ Smaller public keys

✦ Let and .

✦ Let .

✦ Let .

✦ Let .

✦ Then .

q = 19 d = 2
x ∈ [0, 18]
y = Compress19(x, 2)

x⋅ = Decompress(y, 2)
□x⋅ ⟶ x□≪ ≥ 2

→19

0
1

2

3

4

5

6

7

8
910

11

12

13

14

15

16

17

18
0

0
0

1

1

1

1

1

2
22

2
3

3

3

3

3

0
0 0

0
0

5

5

5

5

5
10

1010
10

14

14

14

14

14

0
0

V2b: Optimizations Kyber and Dilithium © Alfred Menezes

Examples: compression and decompression (2)

59

✦ Smaller public keys

✦ Let , , .

✦ Let .

✦ Then

✦ Example:

✦ .

✦ .

✦ The error polynomial is .

q = 3329 d = 10 x ∈ [0, q ⟶ 1]
x⋅ = Decompressq(Compressq(x, d), d)

| (x ⟶ x⋅) mods q | ≥ 2.

Compressq(223 + 1438x + 3280x2 + 798x3, 10) = 69 + 442x + 1009x2 + 245x3

Decompressq(69 + 442x + 1009x2 + 245x3,10) = 224 + 1437x + 3280x2 + 796x3

⟶1 + x + 2x3

V2b: Optimizations Kyber and Dilithium © Alfred Menezes

Examples: compression and decompression (3)

60

✦ Smaller public keys

✦ Let , , .

✦ Let .

✦ Then

✦ Example:

✦ .

✦ .

✦ The error polynomial is .

q = 3329 d = 4 x ∈ [0, q ⟶ 1]
x⋅ = Decompressq(Compressq(x, d), d)

| (x ⟶ x⋅) mods q | ≥ 104.

Compressq(223 + 1438x + 3280x2 + 798x3, 4) = 1 + 7x + 4x3

Decompressq(1 + 7x + 4x3, 4) = 208 + 1456x + 832x3

15 ⟶ 18x ⟶ 49x2 ⟶ 34x3

V2b: Optimizations Kyber and Dilithium © Alfred Menezes

Ciphertext compression

61

✦ Smaller public keys
✦ The ciphertext components and are replaced by

and .

✦ The ML-KEM-768 parameters (, , , ,) have
 and .

✦ So, the size of the compressed ciphertext is bits, or
1,088 bytes (a significant reduction from 1,536 bytes).

u v c1 = Compressq(u, du)
c2 = Compressq(v, dv)

q = 3329 n = 256 k = 3 ℓ1 = 2 ℓ2 = 2
du = 10 dv = 4

3 ∥ 256 ∥ 10 + 256 ∥ 4

V2b: Optimizations Kyber and Dilithium © Alfred Menezes

Central binomial distribution

62

✦ Idea: A polynomial can be selected uniformly at random from by selecting each of its
coefficients uniformly at random from To simplify this, the coefficients are
drawn instead according to a central binomial distribution (CBD) as follows.

✦ Select pairs of bits (with) uniformly at random, and output

. Note that .

✦ In fact, for each , ; this is the CBD.

✦ Example: For , the
central binomial distribution is:

Sℓ
[⟶ℓ, ℓ] . c

ℓ (ai, bi) 1 ≥ i ≥ ℓ

c =
ℓ

∑
i=1

(ai ⟶ bi) c ∈ [⟶ℓ, ℓ]

j ∈ [⟶ℓ, ℓ] Pr(c = j) = (2ℓ
ℓ + j)/22ℓ

ℓ = 2

-2 -1 0 1 2

1/16

4/16
6/16

4/16

1/16

V2b: Optimizations Kyber and Dilithium © Alfred Menezes

Fast polynomial multiplication

63

✦ The computation times for encryption and decryption is
dominated by the time to multiply polynomials in

.

✦ The multiplication can be sped up considerably by using the
Number-Theoretic Transform (NTT), which will be covered
in V4.

Rq = →3329[x]/(x256 + 1)

V2c: Kyber-PKE (full) Kyber and Dilithium © Alfred Menezes

V2c: Kyber-PKE (full)

64

1. Domain parameters and key
generation

2. Encryption and decryption

3. Decryption doesn’t always work

4. Security

V2c: Kyber-PKE (full) Kyber and Dilithium © Alfred Menezes

Domain parameters and key generation

65

For concreteness, we’ll
use the ML-KEM-768
domain parameters:

✦

✦

✦

✦ and

✦ and

q = 3329
n = 256
k = 3
ℓ1 = 2 ℓ2 = 2
du = 10 dv = 4

Kyber-PKE key generation: Alice does:

1. Select and compute
, where .

2. Select and .

3. Compute .

4. Alice’s encryption (public) key is ;
her decryption (private) key is .

η ∈R {0,1}256

A = Expand(η) A ∈ Rk∥k
q

s ∈CBD Sk
ℓ1

e ∈CBD Sk
ℓ1

t = As + e

(η, t)
s

V2c: Kyber-PKE (full) Kyber and Dilithium © Alfred Menezes

Encryption and decryption

66

Kyber-PKE encryption: To encrypt a message
 for Alice, Bob does:

1. Obtain an authentic copy of Alice’s encryption key
 and compute .

2. Select , , and .

3. Compute and .

4. Compute and
 .

5. Output .

m ∈ {0,1}n

(η, t) A = Expand(η)
r ∈CBD Sk

ℓ1
e1 ∈CBD Sk

ℓ2
e2 ∈CBD Sℓ2

u = ATr + e1 v = tTr + e2 + ≡ q
2 ℤm

c1 = Compressq(u, du)
c2 = Compressq(v, dv)

c = (c1, c2)

Kyber-PKE decryption: To
decrypt , Alice does:

1. Compute
 and
.

2. Compute
.

c = (c1, c2)

u⋅ = Decompressq(c1, du)
v⋅ = Decompressq(c2, dv)

m = Roundq(v⋅ ⟶ sTu⋅)

V2c: Kyber-PKE (full) Kyber and Dilithium © Alfred Menezes

Decryption doesn’t always work

67

✦ Question: Does decryption work? i.e., does
✦ Let and .

✦

✦ Thus, if each coefficient of the error polynomial
 satisfies , i.e., .

✦ For the ML-KEM-768 parameters and hence decryption is not guaranteed to
succeed.

✦ However, it can be shown that with probability extremely close to 1.
Consequently, decryption will almost certainly succeed.

m = Roundq(v⋅ ⟶ sTu⋅)?
u⋅ = u + eu v⋅ = v + ev

We have v⋅ ⟶ sTu⋅ = (v + ev) ⟶ sT(u + eu)
= v ⟶ sTu + ev ⟶ sTeu

= eTr + e2 ⟶ sTe1 + ev ⟶ sTeu + ≡q/2ℤm .
Roundq(v⋅ ⟶ sTu⋅) = m Ei

E(x) = eTr + e2 ⟶ sTe1 + ev ⟶ sTeu ⟶q/4 < Ei mods q < q/4 □E□≪ < q/4
|Ei | ↔ q/4

□E□≪ < q/4

V2c: Kyber-PKE (full) Kyber and Dilithium © Alfred Menezes

Security

68

✦ Ciphertext compression doesn’t affect the security
of Kyber-PKE. Consequently, the following claim holds:

✦ Claim: Kyber-PKE is indistinguishable against chosen-plaintext
attack assuming that D-MLWE is intractable.

✦ Note: Kyber-PKE is not intended for stand-alone use.

V2d: Kyber-KEM Kyber and Dilithium © Alfred Menezes

V2d: Kyber-KEM

69

1. Key encapsulation mechanisms

2. Kyber-KEM

3. Parameter sets

4. Omitted details

V2d: Kyber-KEM Kyber and Dilithium © Alfred Menezes

Key encapsulation mechanisms

70

✦ A key encapsulation mechanism (KEM) allows two parties to establish a
shared secret key.

✦ A KEM is comprised of three algorithms:

1. Key generation: Each user, say Alice, uses this algorithm to generate an
encapsulation key (public key) and a decapsulation key (the
private key).

2. Encapsulation: Bob uses Alice’s encapsulation key to generate a
secret key and ciphertext , and sends to Alice.

3. Decapsulation: Alice uses her decapsulation key to recover from
the ciphertext .

ek dk

ek
K c c

dk K
c

V2d: Kyber-KEM Kyber and Dilithium © Alfred Menezes

Kyber-KEM

71

✦ Kyber-KEM is derived by applying (a slight modification) of
the “Fujisaki-Okamoto” (FO) transform to Kyber-PKE.

✦ The FO transform is a generic method for converting a public-
key encryption scheme that is secure against chosen-plaintext
attacks to one that is secure against chosen-ciphertext attacks.

✦ The transform uses three hash functions:
, , and

.
G : {0,1}* ⌋ {0,1}512 H : {0,1}* ⌋ {0,1}256

J : {0,1}* ⌋ {0,1}256

V2d: Kyber-KEM Kyber and Dilithium © Alfred Menezes

Fujisaki-Okamoto transform

72

✦ Encapsulation: Kyber-PKE is used to encrypt a randomly selected .

✦ Derandomization: and the encapsulation key are hashed to produce a random
seed and the secret key . The random polynomials , and needed for
encryption are derived from .

✦ Decapsulation: The intended recipient decrypts the Kyber-PKE ciphertext to recover ,
and then hashes and to obtain and . She then re-encrypts (using) and
compares the resulting ciphertext with .

✦ If , she accepts ; otherwise, she outputs a random key (which is
independent of) obtained by hashing and a secret .

✦ Kyber-KEM has plaintext awareness, i.e., decapsulation will produce (and not) only if
the entity who performed the encapsulation already knows .

✦ This provides resistance to chosen-ciphertext attacks.

m ∈ {0,1}256

m ek
R K r e1 e2

R

c m⋅

m⋅ ek R⋅ K⋅ m⋅ R⋅

c⋅ c

c = c⋅ K⋅ K
K c z

K K
K

V2d: Kyber-KEM Kyber and Dilithium © Alfred Menezes

Domain parameters and key generation

73

For concreteness, we’ll
use the ML-KEM-768
domain parameters:

✦

✦

✦

✦ and

✦ and

q = 3329
n = 256
k = 3
ℓ1 = 2 ℓ2 = 2
du = 10 dv = 4

Kyber-KEM key generation: Alice does:

1. Use the Kyber-PKE key generation algorithm
to select a Kyber-PKE encryption key
and decryption key .

2. Select .

3. Alice’s encapsulation key is ; her
decapsulation key is .

(η, t)
s

z ∈R {0,1}256

ek = (η, t)
dk = (s, ek, H(ek), z)

V2d: Kyber-KEM Kyber and Dilithium © Alfred Menezes

Encapsulation and decapsulation

74

Kyber-KEM encapsulation: To establish a
shared secret key with Alice, Bob does:

1. Obtain an authentic copy of Alice’s
encapsulation key .

2. Select .

3. Compute and
, where .

4. Use the Kyber-PKE encryption algorithm
to encrypt with encryption key , and
using to generate the random quantities
needed; call the resulting ciphertext .

5. Output the secret key and ciphertext .

ek

m ∈R {0,1}256

h = H(ek)
(K, R) = G(m, h) K, R ∈ {0,1}256

m ek
R

c

K c

Kyber-KEM decapsulation: To recover the secret key from
 using , Alice does:

1. Use the Kyber-PKE decryption algorithm to decrypt
using decryption key ; call the resulting plaintext .

2. Compute .

3. Compute

4. Use the Kyber-PKE encryption algorithm to encrypt
with encryption key , and using to generate the
random quantities needed; call the resulting ciphertext .

5. If then return().

6. Return().

K
c dk = (s, ek, H(ek), z)

c
s m⋅

(K⋅ , R⋅) = G(m⋅ , H(ek))
K = J(z, c) .

m⋅

ek R⋅

c⋅

c ⌈ c⋅ K

K⋅

V2d: Kyber-KEM Kyber and Dilithium © Alfred Menezes

Decapsulation failure

75

✦ Decapsulation fails when , whereby the key that is
outputted is (almost certainly) different from the key that was
encapsulated.

✦ This can occur even if the communicating parties,
Alice and Bob, behave honestly since there is a
 (very small) probability that there is a failure
in the underlying Kyber-PKE (whereby .

✦ It can be shown that the
decapsulation failure rate is negligible.

c ⌈ c⋅ K
K

m⋅ ⌈ m)

V2d: Kyber-KEM Kyber and Dilithium © Alfred Menezes

Security

76

✦ Kyber-KEM is indistinguishable against
chosen-ciphertext attacks assuming that D-MLWE
is intractable, and are random functions.

✦ Kyber-KEM is also indistinguishable against a chosen-
ciphertext attack by a quantum adversary who is able to
make both classical queries and quantum queries (in
superposition) to , and .

G, H, J

G H J

V2d: Kyber-KEM Kyber and Dilithium © Alfred Menezes

Parameter sets

77

Categories 1, 3, 5: Fastest known attacks require at least as much resources as needed for exhaustive
 key search on, respectively, a 128-bit, 192-bit, and 256-bit block cipher.

V2d: Kyber-KEM Kyber and Dilithium © Alfred Menezes

Omitted details

78

✦ Formatting for bit strings and byte strings.
✦ Hash functions:

✦ is SHA3-512, is SHA3-256, is SHAKE256 (see FIPS 202).

✦ eXtendable Output Function (XOF) used to generate .
✦ SHAKE128 is used.

✦ PseudoRandom Function (PRF) used to generate .
✦ SHAKE256 is used.

✦ Number-Theoretic Transform (NTT)

✦ for fast polynomial multiplication in (see V4b).

G H J
A

s, e, r, e1, e2

Rq = →3329[x]/(x256 + 1)

V2d: Kyber-KEM Kyber and Dilithium © Alfred Menezes

References

79

csrc.nist.gov/pubs/fips/203/final

pq-crystals.org/kyber

2018 IEEE European Symposium
on Security and Privacy,
pp. 353-367.

http://csrc.nist.gov/pubs/fips/203/final
http://pq-crystals.org/kyber

