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Lattice definition
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✦ Definition. A lattice  in  is the set of all integer linear combinations of  linearly 
independent vectors  in  (and where ). The set  is called a 
basis of , and we write . The dimension of  is , and the rank of  is .

✦ Notes:

1. We will henceforth assume that the basis vectors  are in .

2.  Thus, . 
  is called an integer lattice.

3. Let  be the  matrix whose columns are the basis vectors ,  

so .   Then .

L ∈n m
B = {v1, v2, …, vm} ∈n m ℤ n B

L L = L(B) L n L m

v1, v2, …, vm ×n

L = {x1v1 + x2v2 + ≠ + xmvm : x1, x2, …, xm − ×} ≪ ×n

L

B n ≥ m v1, …, vm

B =
| | ≠ |
v1 v2 ≠ vm
| | ≠ |

L = {Bx : x − ×m}
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Full-rank lattices
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✦ Definition. A full-rank lattice  in  is a lattice in  of rank .

✦ Definition. Let  and  be lattices in .  
Then  is a sublattice of  if .

✦ Henceforth, unless otherwise stated, all lattices and sublattices will 
be full-rank (and integer).

✦ Note that a basis  for a full-rank lattice in  is 
also a basis for the vector space .

L ∈n ∈n n

L L′ ∈n

L′ L L′ ≪ L

B = {v1, v2, …, vn} ∈n

∈n
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Lattice: Example 1
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✦ Let  and .

✦ Then , 

where .

✦ Thus, .

✦ Fundamental parallelepiped: 
. 

n = 2 B1 = {(1,0), (0,1)}
L1 = L(B1) = {B1x : x − ×2}
B1 = [1 0

0 1]
L1 = ×n

P(B1) = {a1(1,0) + a2(0,1) : a1, a2 − [0,1)}
(1,0)

(0,1)
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Fundamental parallelepiped
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✦ Definition. Let  be a lattice in , where .   
The fundamental parallelepiped of  is 

.

✦ Notes:

1. Equivalently, .

2.  can be used to partition  into non-overlapping regions 
(called parallelepipeds). The “corners” of these parallelepipeds are 
the elements of the lattice .

L = L(B) ∈n B = {v1, v2, …, vn}
L

P(B) = {a1v1 + a2v2 + ≠ + anvn : ai − [0,1)}

P(B) = {Bx : x − [0,1)n}
P(B) ∈n

L(B)
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Lattice: Example 2
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✦ Let  and .

✦ Then 
, 

where .

✦ Notes:

1.  a sublattice of .

2.  since , but 

. 

n = 2 B2 = {(2,0), (0,1)}

L2 = L(B2) = {B2x : x − ×2}
B2 = [2 0

0 1]
L2 L1

L2 ⟶ L1 (1,0) − L1

(1,0) = 1
2 □ (2,0) + 0 □ (0,1) ≫ L2

(2,0)

(0,1)

(1,0)
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Lattice: Example 3
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✦ Let  and .

✦ Then , where 

.

✦ Notes:

1.  since   
 and 

.

2.  since   
 and 

.

3. Thus .

n = 2 B3 = {(≤2, ≤ 2), (4,3)}
L3 = L(B3) = {B3x : x − ×2}

B3 = [≤2 4
≤2 3]

L2 ≪ L3
(2,0) = 3 □ (≤2, ≤ 2) + 2 □ (4,3)
(0,1) = ≤ 2 □ (≤2, ≤ 2) ≤ 1 □ (4,3)
L3 ≪ L2
(≤2, ≤ 2) = ≤ 1 □ (2,0) ≤ 2 □ (0,1)
(4,3) = 2 □ (2,0) + 3 □ (0,1)

L3 = L2 (-2,-2)

(4,3)

(2,0)

(0,1)
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One basis is “nicer” than the other
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✦  and 
 are the same 

lattice, but described using different bases.

✦ The basis  is “nicer” 
than the basis  
since the vectors in  are “shorter” and 
“orthogonal” to each other.

✦ The length of a vector 
 is 

 (also called 
the Euclidean length or - norm).

L2 = L({(2,0), (0,1)}
L3 = L({(≤2, ≤ 2), (4,3)})

B2 = {(2,0), (0,1)}
B3 = {(≤2, ≤ 2), (4,3)}

B2

a = (a1, a2, …, an) − ∈n

ΔaΔ2 = a2
1 + a2

2 + ≠ + a2
n

ℓ2

B2

B3
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Lattice: Example 4
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✦ Let  and .

✦ Then , 

where .

✦ Exercise: Prove that  and 
.

✦ Exercise: Prove that 
 is another (nicer) 

basis for .

n = 2 B4 = {(2,0), (1,1)}
L4 = L(B4) = {B4x : x − ×2}
B4 = [2 1

0 1]
L4 ⟶ L1

L4 ⟶ L2

{(1, ≤ 1), (1,1)}
L4

(2,0)

(1,1)

(1,-1)
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A lattice has infinitely many bases
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✦ Theorem (characterization of lattice bases) Let  be an -dimensional 
(integer) lattice. Then an  integer matrix  is also a basis for  if and 
only if , where  is an  matrix (the change-of-basis matrix) 
with integer entries and with . (Such a matrix  is called 
unimodular.)

✦ Example.  and  are bases for the same lattice since 

 where  is a unimodular matrix. 

L = L(B1) n
n ≥ n B2 L

B1 = B2U U n ≥ n
det(U) = ± 1 U

B2 = [2 0
0 1] B3 = [≤2 4

≤2 3]
[2 0

0 1] = [≤2 4
≤2 3] □ [3 ≤2

2 ≤1] U
B2 B3 U
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Proof of the characterization of lattice bases

✦ Proof.   Suppose that  and  are both bases for .   
Since  is a basis for , and since the vectors in  are in , we can write 

 for some invertible matrix .  
Similarly, we can write  for some invertible matrix . 
Now, . 
Since  is invertible, we have .  
Thus, , and hence  and . 
 

 Exercise.  

( ⌈ ) B1 B2 L ≪ ∈n

B1 L B2 L
B2 = B1U U − ×n≥n

B1 = B2V V − ×n≥n

B1 = B2V = (B1U)V = B1(UV)
B1 UV = In
det(U) det(V) = 1 det(U) = ± 1 det(V) = ± 1

( ⌋ ) ⌉

46
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Volume of a lattice
✦ Definition. Let  be a lattice. The volume of  is .

✦ Note: The volume of a lattice is the “volume” of the fundamental parallelepiped 
of the lattice. 

✦ If the lattice is 2-dimensional, then its volume is the area of its 
parallelepiped.

✦ Informally, the volume of a lattice is inversely proportional to the density 
of its lattice vectors. The larger the volume, the sparser is the lattice.

✦ Exercise. Show that the volume is an invariant of , i.e., it doesn’t depend on the 
basis  chosen for .

✦ Exercise. Suppose that . Prove that .

L = L(B) L vol(L) = |det(B) |

L
B L

L1 ≪ L2 vol(L1) ⌊ vol(L2)

47
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Some bases are nicer than others
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✦ Shortest Vector Problem (SVP):  
Given a lattice , find 
a shortest nonzero vector in .

✦ Example: Consider the two SVP 
instances  
and .

✦ So, hardness of an SVP instance 
 depends on the quality of the 

given basis  for .

L = L(B) ≪ ×n

L

L2 = L({(2,0), (0,1)})
L3 = L({(≤2, ≤ 2), (4,3)})

L(B)
B L

B2

B3
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Successive minima
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✦ A fundamental problem in lattice-based cryptanalysis is finding a “good” basis for a lattice.

✦ Definition: Let  be a lattice. For each , the th successive minimum  is the 
smallest real number  such that  has  linearly independent vectors the longest of which 
has length .

✦ Notes:

1. . 

2.  is the length of a shortest nonzero vector in .

3. (Minkowski’s Theorem) 

4. (Gaussian Heuristic)  for random lattices.

5.  is a lower bound on the length of a shortest basis for .

L ≪ ×n i − [1, n] i λi(L)
r L i

r

λ1(L) ℤ λ2(L) ℤ ≠ ℤ λn(L)
λ1(L) L

λ1(L) ℤ n vol(L)1/n .
λ1(L) ℝ n/(2πe) vol(L)1/n

λn(L) L
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LLL lattice basis reduction algorithm
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✦ (1982) The Lenstra-Lenstra-Lovász (LLL) algorithm is a polynomial-time 
algorithm for finding a relatively short basis for a lattice .

✦ Notes:

1. The LLL algorithm is a clever modification of the Gram-Schmidt process for 
finding an orthogonal basis for a vector space in .

2. Let  be the basis for  produced by the LLL algorithm, with 
.  Then  for .   

In particular,    and  .

3. Also, ,  and  .

L

∈n

B = {b1, b2, …, bn} L
Δb1Δ2 ℤ Δb2Δ2 ℤ ≠ ℤ ΔbnΔ2 ΔbiΔ2 ℤ 2(n≤1)/2λi(L) 1 ℤ i ℤ n

Δb1Δ2 ℤ 2(n≤1)/2λ1(L) ΔbnΔ2 ℤ 2(n≤1)/2λn(L)

Δb1Δ2 ℤ 2(n≤1)/4vol(L)1/n
n

∏
i=1

ΔbiΔ2 ℤ 2n(n≤1)/4vol(L)
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Cryptanalytic applications of LLL
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✦ Let  be the basis for  produced by the LLL algorithm, with 
.  Then  for .  

✦ In practice, the basis produced by LLL is typically significantly shorter than the above 
guarantee. 

✦ LLL has been used to design attacks on many number-theoretic problems and public-key 
cryptographic systems.

✦ e.g., see “Lattice attacks on digital signatures schemes”, Designs, Codes and Cryptography, 
by N. Howgrave-Graham and N. Smart (2000): Finds the DSA (and ECDSA) secret key 
when a small number of bits of each per-message secret for several signed messages are 
leaked.

✦ e.g., see “Lattice reduction in cryptology: an update”, Proceedings of ANTS-IV, by P. 
Nguyen and J. Stern (2000).

B = {b1, b2, …, bn} L
Δb1Δ2 ℤ Δb2Δ2 ℤ ≠ ℤ ΔbnΔ2 ΔbiΔ2 ℤ 2(n≤1)/2λi(L) 1 ℤ i ℤ n
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SVP: A fundamental lattice problem
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✦ Shortest Vector Problem (SVP): Given a lattice , find a lattice vector of length .

✦ SVP is NP-hard.

✦ The fastest (classical) algorithm known for SVP has (heuristic) running time .

✦ The fastest quantum algorithm known for SVP has (heuristic) running time .

✦ Approximate-SVP problem ( ): Given a lattice , find a nonzero lattice vector of 
length at most .

✦  is believed to be hard for small .  
It’s NP-hard for constant , but likely isn’t NP-hard if .

✦ For , the fastest algorithm known for  has running time   
(where  hides a power of ).

✦ If , then  can be efficiently solved using the LLL algorithm.

L = L(B) λ1(L)

20.292n+o(n)

20.265n+o(n)

SVPγ L = L(B)
γ □ λ1(L)

SVPγ γ
γ γ > n

γ = 2k SVPγ 2⋯̃(n/k)

⋯̃ log n

γ > 2(n log log n)/log n SVPγ
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SIVP: Another fundamental lattice problem
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✦ Shortest Independent Vectors Problem (SIVP): Given a lattice , find  
linearly independent vectors in  all of which have length at most .

✦ A solution to SIVP isn’t necessarily a basis for .

✦ SIVP is NP-hard. 

✦ Approximate-SIVP problem ( ): Given a lattice , find  linearly 
independent vectors in  all of which have length at most .

✦ The hardness of  is similar to that of .

✦ Fact: .

L = L(B) n
L λn(L)

L

SIVPγ L = L(B) n
L γ □ λn(L)
SIVPγ SVPγ

SIVPγ n ℤ SVPγ


