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Lattice definition

+ Definition. A lattice L in R" is the set of all integer linear combinations of m linearly

independent vectors B = {v, V,, ..., v} in R" (and where m < n). The set B is called a
basis of L, and we write L = L(B). The dimension of L is n, and the rank of L is m.

+ Notes:

1. We will henceforth assume that the basis vectors v, v,, ..., v, are in Z".

2. Thus, L= {xv;+xv,+ - +x,v, : X,%,....X,, €L} C 7"
L is called an integer lattice.

3. Let B be the n X m matrix whose columns are the basis vectors v, ..., v

soB=|V1 V2 ** Vyu|. ThenL ={Bx:x € Z™"}.
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Full-rank lattices

+ Definition. A full-rank lattice L in R" is a lattice in R" of rank n.

+ Definition. Let L. and L’ be lattices in R".
Then L'is a sublatticeof Lif L' C L.

+ Henceforth, unless otherwise stated, all lattices and sublattices will
be full-rank (and integer).

+ Note that a basis B = {v, v, ..., v } for a full-rank lattice in R" is
n

also a basis for the vector space |
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Lattice: Example 1

+ Letn=2and B, = {(1,0), (0,1)}.
+ ThenL, = L(B)) = {B;x : x € Z*},

where B| = [(1) (1)]

+ Thus, L, = Jn o o "y Y " o 0 o
+ Fundamental parallelepiped: o—o—o Lo: —o—o—

P(B,) = {a,(1,0) + a,(0,1) : a;,a, € [0,1)}.
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Fundamental parallelepiped

+ Definition. Let L = L(B) be a lattice in R", where B = {v,v,, ...,V }.
The fundamental parallelepiped of L is
P(B) = {ayv; +av, + - +a,v, :a;, € [0,1)}.

+ Notes:

1. Equivalently, P(B) = {Bx : x € [0,1)"}.

2. P(B) can be used to partition R" into non-overlapping regions

(called parallelepipeds). The “corners” of these parallelepipeds are
the elements of the lattice L(B).
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Lattice: Example 2

N Letn _ 2 and B2 _ {(2,0), (O,l)} CEREER R R FERER R LERER RN ?
+ Then
L, = LB, = {Byx : x € 7%},
2 0
here B, = .
whnere o [O 1
+ Notes:

1. L, a sublattice of L.

2. L, # L, since (1,0) € L, but
1
(1,0) ==-(2,0)+0-(0,1) & L,.

2 o ®
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Lattice: Example 3

+ Letn=2and B; = {(—2,—2),(4,3)}. o I & o
+ Then L, = L(B;) = {B;x : x € Z*}, where o o o o
-2 4
B, = .
; [—2 3
+ Notes:

1. L, C L; since
20)=3-(-2,—-2)+2-(4,3) and

2. Ly C L, since
(—2,-2)=-1-2,0)—2-(0,1) and
4,3) =2-2,0)+3-(0,1).

3. Thus L, = L,.
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One basis is “nicer” than the other

+ L, =L({(2,0),(0,1)} and
Ly=L{(-2,-2),(4,3)}) are the same

lattice, but described using different bases.

+ The basis B, = {(2,0),(0,1)} is “nicer”
than the basis B; = {(—2, — 2),(4,3)}
since the vectors in B, are “shorter” and
“orthogonal” to each other.

+ The length of a vector
a=(a,ay,...,a,) € R"is

lall, =+/a? + a? + -+ + a? (also called
2 | ) n

the Euclidean length or £,5- norm).
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Lattice: Example 4

Letn =2 and B, = {(2,0),(1,1)}.

where B, = [g i]

Exercise: Prove that L, # L; and
L, # L,

Exercise: Prove that
{(1,—-1),(1,1)} is another (nicer)
basis for L.
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A lattice has infinitely many bases

+ Theorem (characterization of lattice bases) Let L = L(B,) be an n-dimensional
(integer) lattice. Then an n X n integer matrix B, is also a basis for L if and
only if B; = B,U, where U is an n X n matrix (the change-of-basis matrix)
with integer entries and with det(U) = % 1. (Such a matrix U is called
unimodular.)

+ Example. B, = [3 (1)] and B; = [:% ;L] are bases for the same lattice since

2 0] _ -2 4] (3 -2 | | |
[O 1] — [_2 3] [2 B 1] where U is a unimodular matrix.
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Proof of the characterization of lattice bases

+ Proof. (= ) Suppose that B, and B, are both bases for L C R".
Since B is a basis for L, and since the vectors in B, are in L, we can write
B, = B, U for some invertible matrix U € Z"*".

Similarly, we can write B; = B,V for some invertible matrix V € Z""*".
Now, B; = B,V = (B,U)V = B,{(UV).

Since B, is invertible, we have UV = I ..

Thus, det(U) det(V) = 1, and hence det(U) = = 1 and det(V) = = 1.

( <= ) Exercise. []
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Volume of a lattice

+ Definition. Let L = L(B) be a lattice. The volume of L is vol(L) = |det(B)|.

+ Note: The volume of a lattice is the “volume” of the fundamental parallelepiped
of the lattice.

+ If the lattice is 2-dimensional, then its volume is the area of its
parallelepiped.

+ Informally, the volume of a lattice is inversely proportional to the density
of its lattice vectors. The larger the volume, the sparser is the lattice.

+ Exercise. Show that the volume is an invariant of L, i.e., it doesn’t depend on the
basis B chosen for L.

+ Exercise. Suppose that L, C L,. Prove that vol(L,) > vol(L,).
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4. Lattices

Some bases are nicer than others

Shortest Vector Problem (SVP):
Given a lattice L = L(B) C Z", find
a shortest nonzero vector in L.

Example: Consider the two SVP
instances L, = L({(2,0), (0,1)})

So, hardness of an SVP instance
L(B) depends on the quality of the

given basis B for L.
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Successive minima

+ A fundamental problem in lattice-based cryptanalysis is finding a “good” basis for a lattice.

+ Definition: Let L C Z" be a lattice. For each i € [1, n], the ith successive minimum A(L) is the
smallest real number r such that L has i linearly independent vectors the longest of which

has length 7.
+ Notes:
1. 4{(L) £ (L) L - < 4,(L).
2. A{(L) is the length of a shortest nonzero vector in L.

3. (Minkowski’s Theorem) A,(L) < \/Z vol(L)!".

4. (Gaussian Heuristic) A{(L) =~ \/ n/(2re) vol(L)'" for random lattices.

5. 4,(L) is a lower bound on the length of a shortest basis for L.
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+ (1982) The Lenstra-Lenstra-Lovasz (LLL) algorithm is a polynomial-time

LLL lattice basis reduction algorithm

algorithm for finding a relatively short basis for a lattice L.

+ Notes:

4. Lattices

1. The LLL algorithm is a clever modification of the Gram-Schmidt process for

finding an orthogonal basis for a vector space in |

IDRL

2. Let B = {b,, bz, el bn} be the basis for L produced by the LLL algorithm, with
16111, < Iyl < -+ < lIb,ll,. Then [Ill, < 20=D24(L) for 1 <i <n

In particular, Hble < 2=D/i2) (L) and ||b,]||, <

2(n— 1)/2/1n(L).

3. Also, [|by|l, < 2 YAvol(L)'"" and H 1b,]], < 2"=Diyol(L).

=1
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Cryptanalytic applications of LLL

+ LetB = {b, b, ...,b,} be the basis for L produced by the LLL algorithm, with
1511l < 1By ll, < <+ < IB,llp- Then [Ibll, < 27 V22(L) for 1 < i < m.

+ In practice, the basis produced by LLL is typically significantly shorter than the above
guarantee.

+ LLL has been used to design attacks on many number-theoretic problems and public-key
cryptographic systems.

+ e.g., see “Lattice attacks on digital signatures schemes”, Designs, Codes and Cryptography,
by N. Howgrave-Graham and N. Smart (2000): Finds the DSA (and ECDSA) secret key

when a small number of bits of each per-message secret for several signed messages are
leaked.

+ e.g., see “Lattice reduction in cryptology: an update”, Proceedings of ANTS-1V, by P.
Nguyen and J. Stern (2000).
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SVP: A tundamental lattice problem

+ Shortest Vector Problem (SVP): Given a lattice L = L(B), find a lattice vector of length 4,(L).
+ SVP is NP-hard.
+ The fastest (classical) algorithm known for SVP has (heuristic) running time D0.292n+0(n)

+ The fastest quantum algorithm known for SVP has (heuristic) running time 2°-20>7+o()

+ Approximate-SVP problem (SVP,): Given a lattice L = L(B), find a nonzero lattice vector of
length at most y - 4;(L).

+ SVP, is believed to be hard for small y.
[t's NP-hard for constant y, but likely isn’t NP-hard if y > \/2 .

+ Fory = 2K the fastest algorithm known for SVP, has running time 2Om/k)
(where ® hides a power of log n).

+ Ify > 2(loglognilogn then SVP, can be efficiently solved using the LLL algorithm.
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SIVP: Another fundamental lattice problem

Shortest Independent Vectors Problem (SIVP): Given a lattice L = L(B), find n
linearly independent vectors in L all of which have length at most 4 (L).

A solution to SIVP isn’t necessarily a basis for L.

SIVP is NP-hard.

Approximate-SIVP problem (SIVP,): Given a lattice L = L(B), find n linearly
independent vectors in L all of which have length at most y - 4, (L).

The hardness of SIVP, is similar to that of SVP,.

Fact: SIVP}/ \/Z S SVP},.
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