

THE MATHEMATICS OF LATTICE-BASED CRYPTOGRAPHY

4. Lattices

Alfred Menezes
cryptography101.ca

Outline

1. Definition of a lattice
2. Characterization of the bases of a lattice
3. Successive minima
4. LLL lattice basis reduction algorithm
5. SVP
6. SIVP

Lattice definition

♦ **Definition.** A *lattice* L in \mathbb{R}^n is the set of all integer linear combinations of m linearly independent vectors $B = \{v_1, v_2, \dots, v_m\}$ in \mathbb{R}^n (and where $m \leq n$). The set B is called a *basis* of L , and we write $L = L(B)$. The *dimension* of L is n , and the *rank* of L is m .

♦ **Notes:**

1. We will henceforth assume that the basis vectors v_1, v_2, \dots, v_m are in \mathbb{Z}^n .

2. Thus, $L = \{x_1v_1 + x_2v_2 + \dots + x_mv_m : x_1, x_2, \dots, x_m \in \mathbb{Z}\} \subseteq \mathbb{Z}^n$.
 L is called an *integer lattice*.

3. Let B be the $n \times m$ matrix whose columns are the basis vectors v_1, \dots, v_m ,

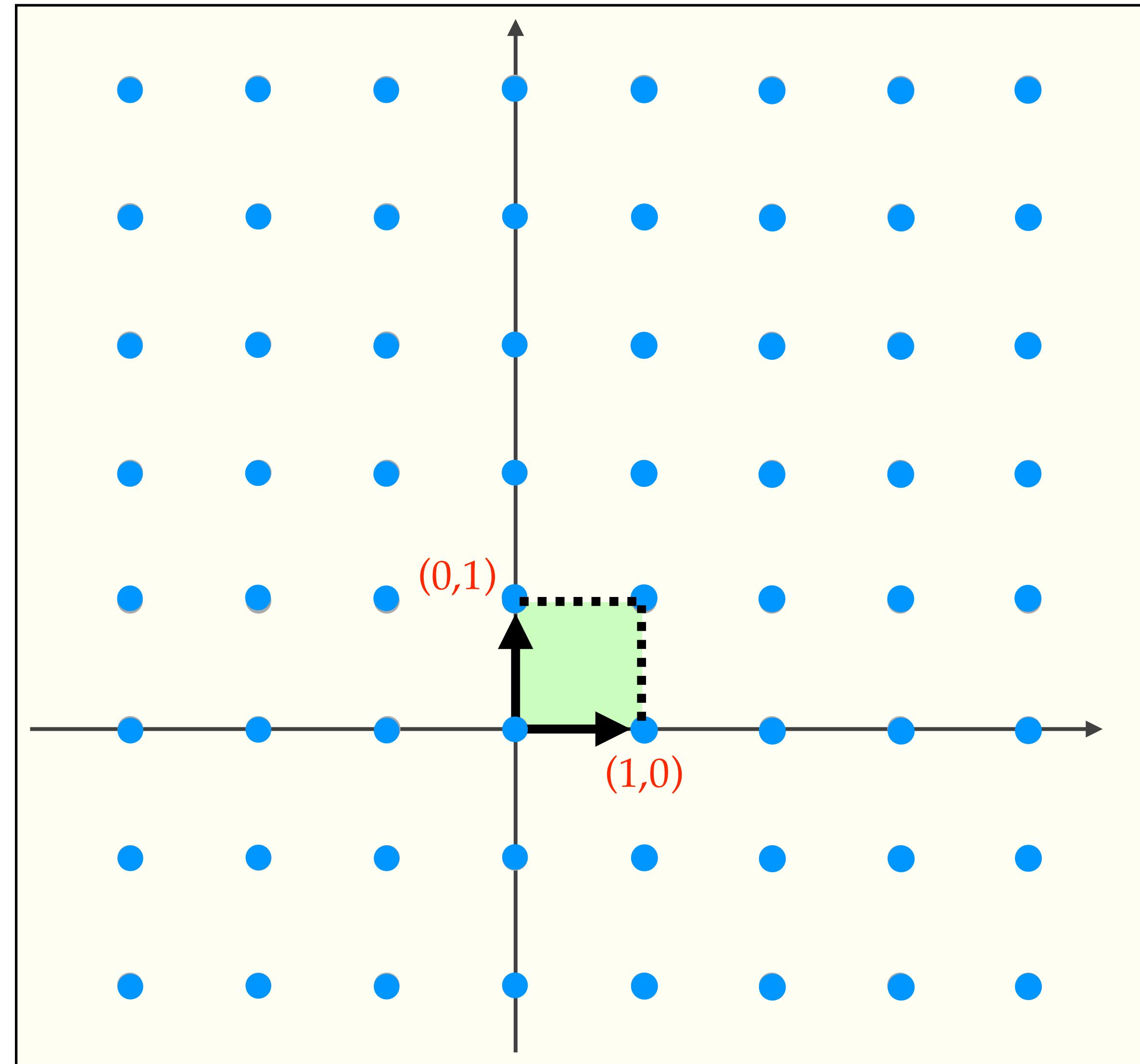
$$\text{so } B = \begin{bmatrix} | & | & \dots & | \\ v_1 & v_2 & \cdots & v_m \\ | & | & \dots & | \end{bmatrix}. \text{ Then } L = \{Bx : x \in \mathbb{Z}^m\}.$$

Full-rank lattices

- ♦ **Definition.** A *full-rank lattice* L in \mathbb{R}^n is a lattice in \mathbb{R}^n of rank n .
- ♦ **Definition.** Let L and L' be lattices in \mathbb{R}^n .
Then L' is a *sublattice* of L if $L' \subseteq L$.
- ♦ Henceforth, unless otherwise stated, all lattices and sublattices will be full-rank (and integer).
- ♦ Note that a basis $B = \{v_1, v_2, \dots, v_n\}$ for a full-rank lattice in \mathbb{R}^n is also a basis for the vector space \mathbb{R}^n .

Lattice: Example 1

- Let $n = 2$ and $B_1 = \{(1,0), (0,1)\}$.
- Then $L_1 = L(B_1) = \{B_1x : x \in \mathbb{Z}^2\}$,
where $B_1 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$.
- Thus, $L_1 = \mathbb{Z}^n$.
- Fundamental parallelepiped:**
 $P(B_1) = \{a_1(1,0) + a_2(0,1) : a_1, a_2 \in [0,1)\}$.

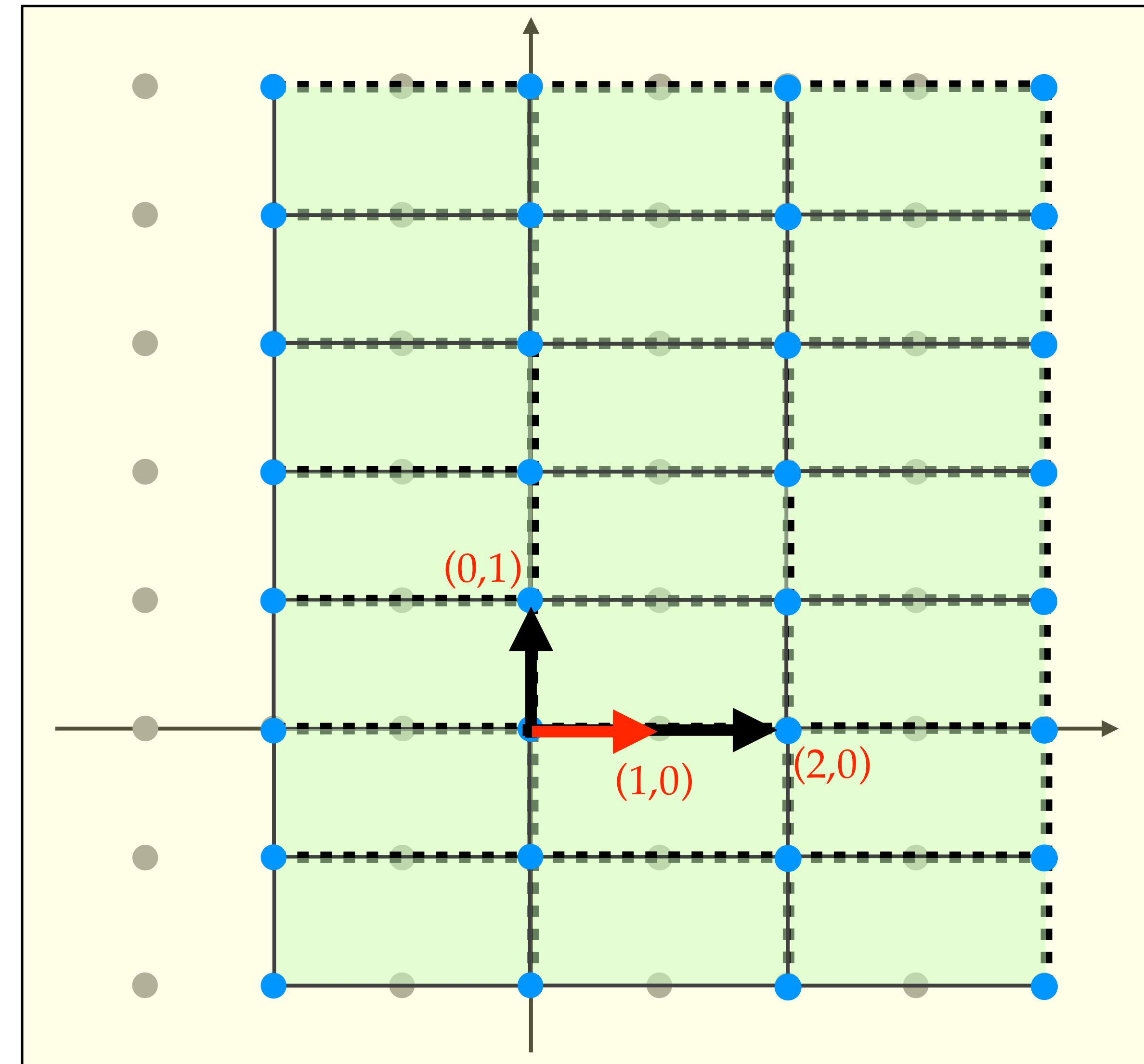


Fundamental parallelepiped

- ♦ **Definition.** Let $L = L(B)$ be a lattice in \mathbb{R}^n , where $B = \{v_1, v_2, \dots, v_n\}$. The *fundamental parallelepiped* of L is $P(B) = \{a_1v_1 + a_2v_2 + \dots + a_nv_n : a_i \in [0,1)\}$.
- ♦ **Notes:**
 1. Equivalently, $P(B) = \{Bx : x \in [0,1)^n\}$.
 2. $P(B)$ can be used to partition \mathbb{R}^n into non-overlapping regions (called parallelepipeds). The “corners” of these parallelepipeds are the elements of the lattice $L(B)$.

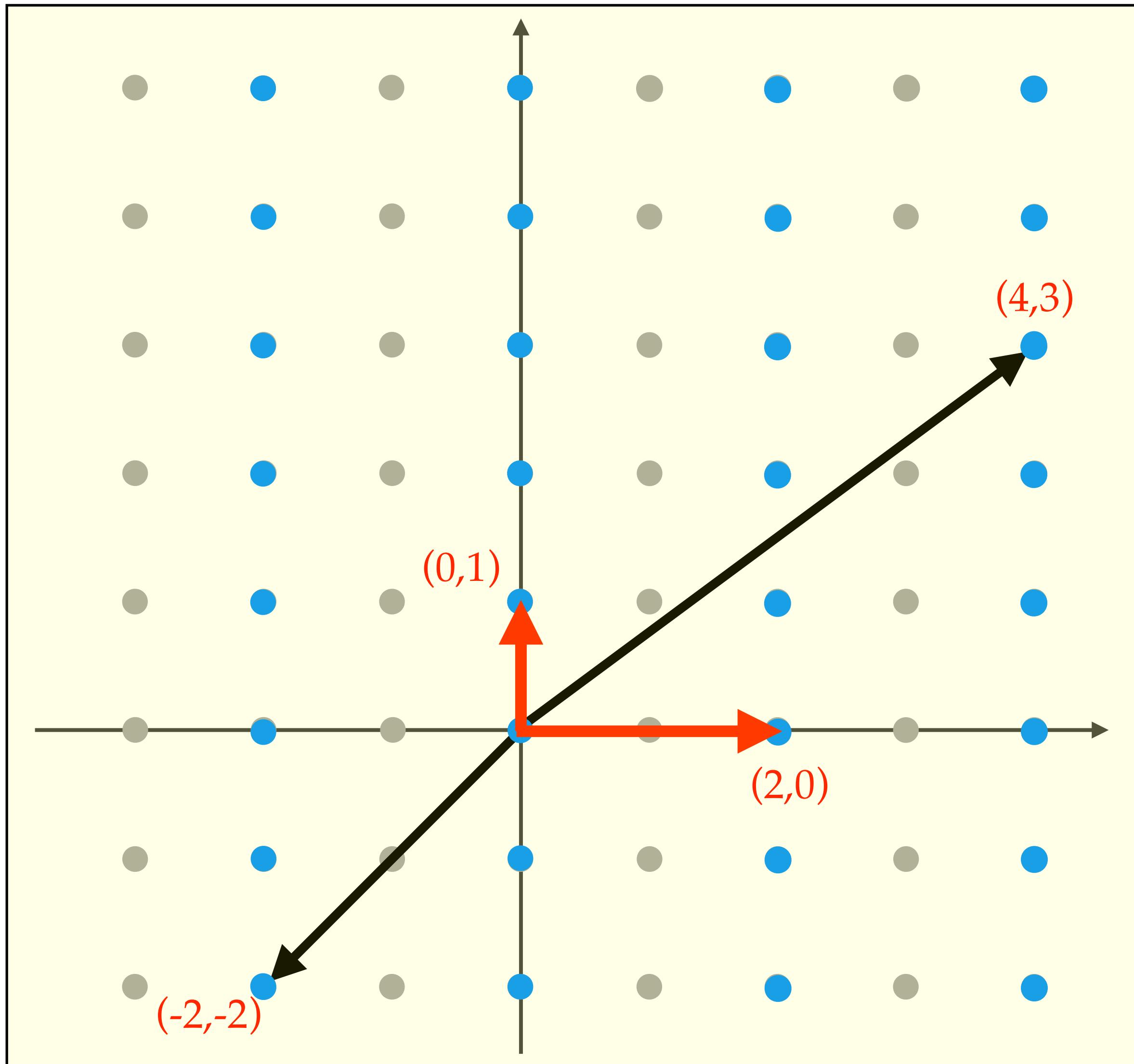
Lattice: Example 2

- Let $n = 2$ and $B_2 = \{(2,0), (0,1)\}$.
- Then $L_2 = L(B_2) = \{B_2x : x \in \mathbb{Z}^2\}$, where $B_2 = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}$.
- Notes:**
 - L_2 a sublattice of L_1 .
 - $L_2 \neq L_1$ since $(1,0) \in L_1$, but $(1,0) = \frac{1}{2} \cdot (2,0) + 0 \cdot (0,1) \notin L_2$.



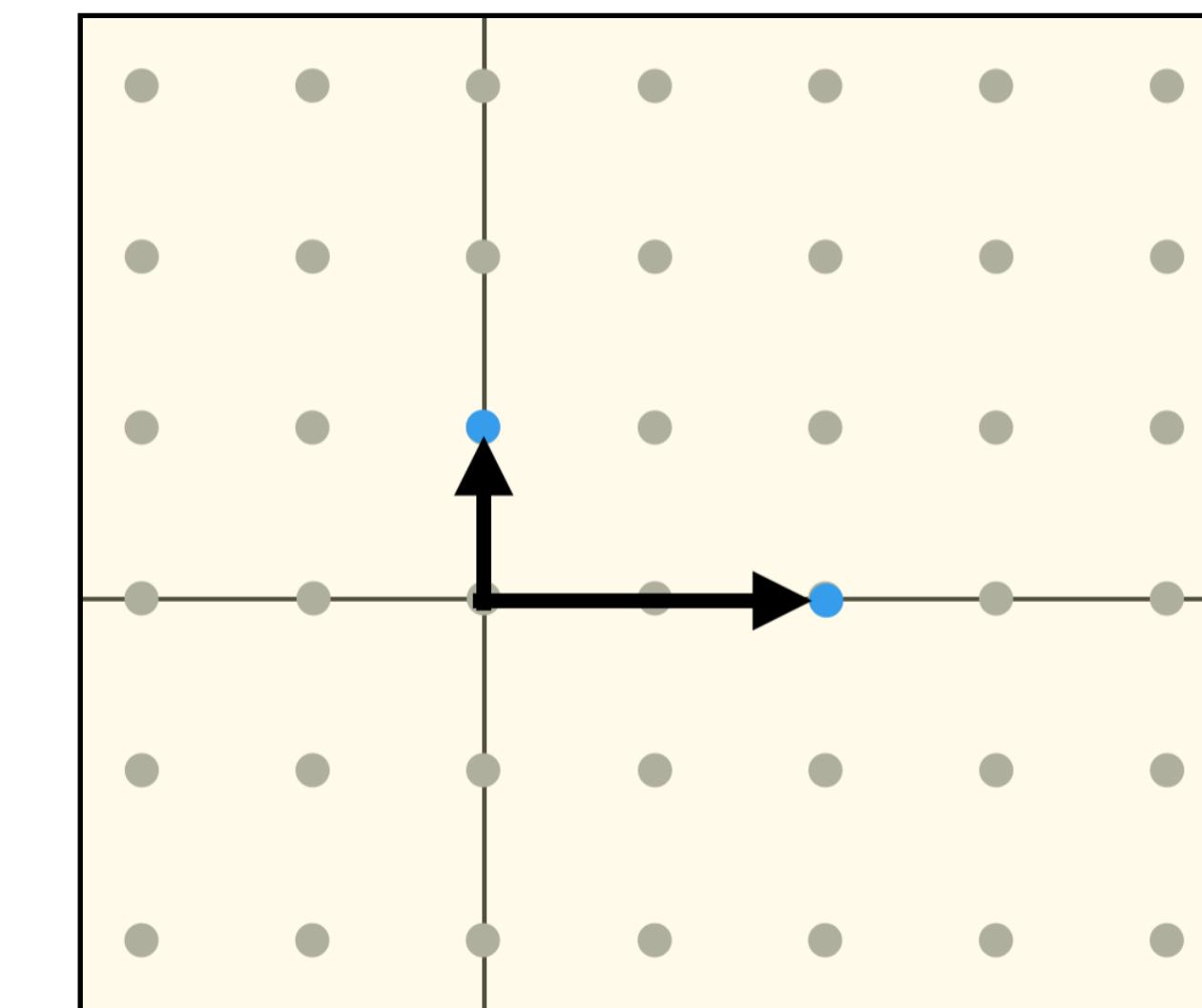
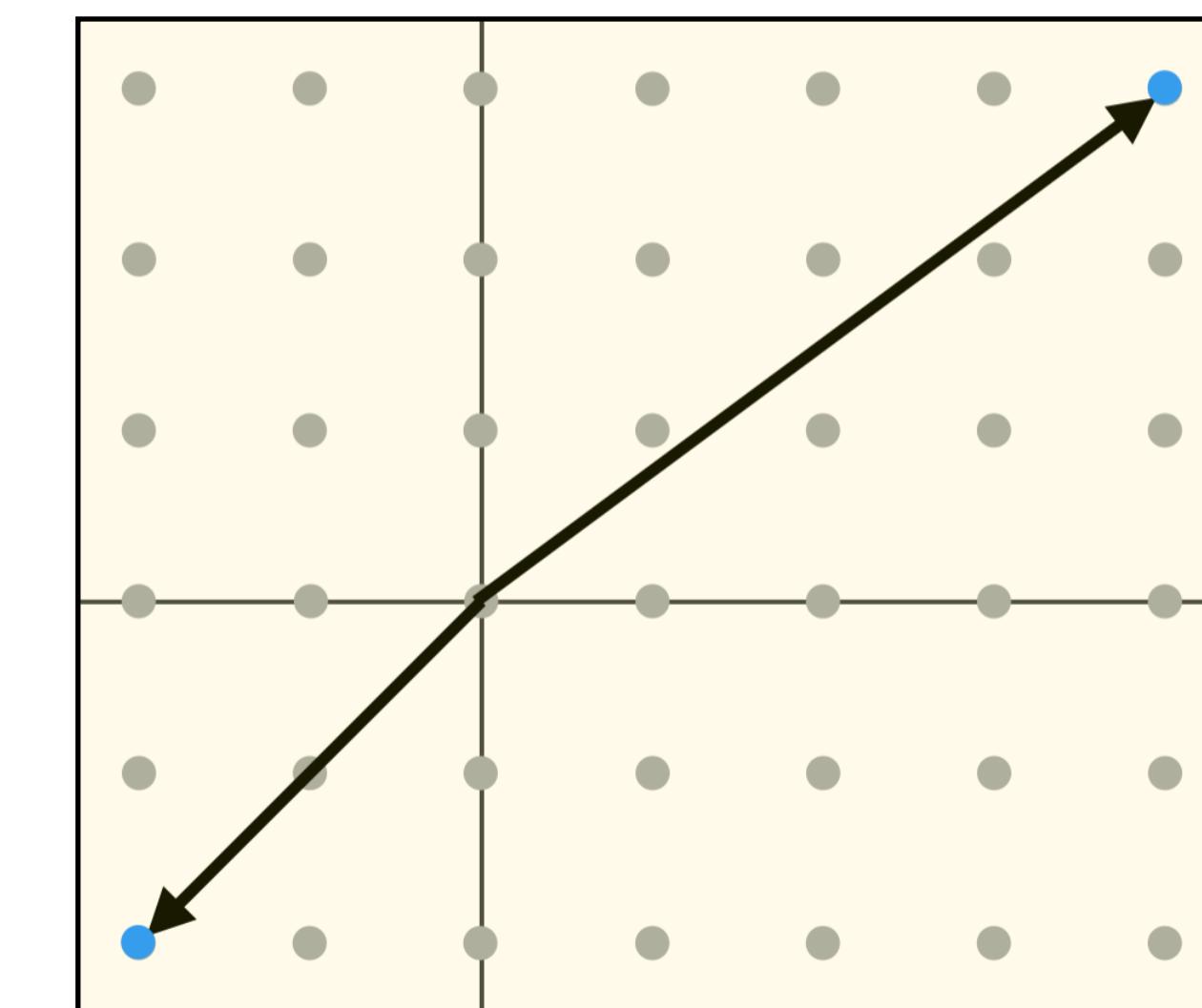
Lattice: Example 3

- Let $n = 2$ and $B_3 = \{(-2, -2), (4, 3)\}$.
- Then $L_3 = L(B_3) = \{B_3x : x \in \mathbb{Z}^2\}$, where $B_3 = \begin{bmatrix} -2 & 4 \\ -2 & 3 \end{bmatrix}$.
- Notes:**
 - $L_2 \subseteq L_3$ since $(2, 0) = 3 \cdot (-2, -2) + 2 \cdot (4, 3)$ and $(0, 1) = -2 \cdot (-2, -2) - 1 \cdot (4, 3)$.
 - $L_3 \subseteq L_2$ since $(-2, -2) = -1 \cdot (2, 0) - 2 \cdot (0, 1)$ and $(4, 3) = 2 \cdot (2, 0) + 3 \cdot (0, 1)$.
 - Thus $L_3 = L_2$.



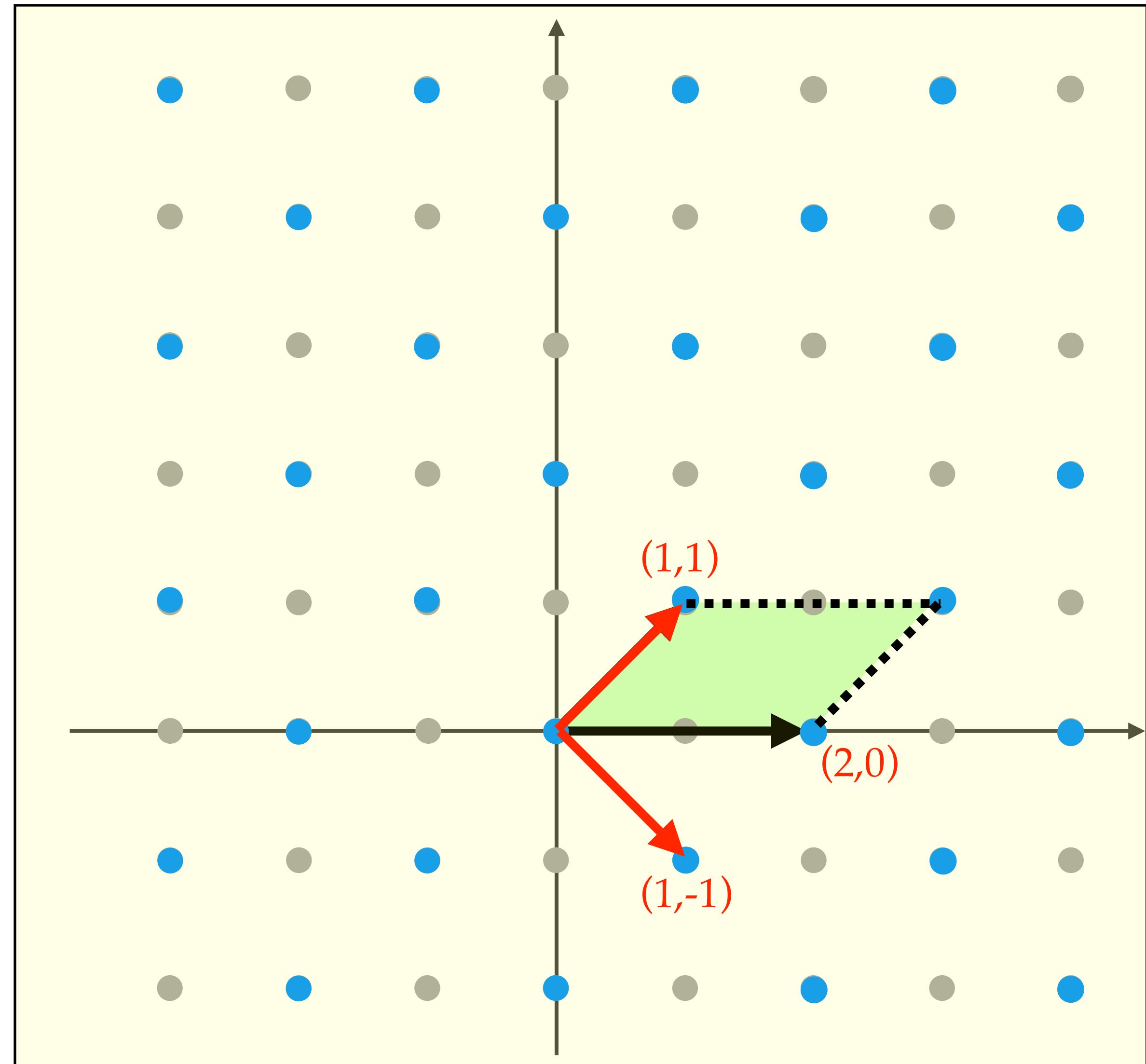
One basis is “nicer” than the other

- ♦ $L_2 = L(\{(2,0), (0,1)\})$ and $L_3 = L(\{(-2, -2), (4,3)\})$ are the same lattice, but described using different bases.
- ♦ The basis $B_2 = \{(2,0), (0,1)\}$ is “nicer” than the basis $B_3 = \{(-2, -2), (4,3)\}$ since the vectors in B_2 are “shorter” and “orthogonal” to each other.
- ♦ The *length* of a vector $a = (a_1, a_2, \dots, a_n) \in \mathbb{R}^n$ is $\|a\|_2 = \sqrt{a_1^2 + a_2^2 + \dots + a_n^2}$ (also called the *Euclidean length* or ℓ_2 -norm).



Lattice: Example 4

- Let $n = 2$ and $B_4 = \{(2,0), (1,1)\}$.
- Then $L_4 = L(B_4) = \{B_4x : x \in \mathbb{Z}^2\}$, where $B_4 = \begin{bmatrix} 2 & 1 \\ 0 & 1 \end{bmatrix}$.
- Exercise: Prove that $L_4 \neq L_1$ and $L_4 \neq L_2$.
- Exercise: Prove that $\{(1, -1), (1,1)\}$ is another (nicer) basis for L_4 .



A lattice has infinitely many bases

- ♦ **Theorem** (*characterization of lattice bases*) Let $L = L(B_1)$ be an n -dimensional (integer) lattice. Then an $n \times n$ integer matrix B_2 is also a basis for L if and only if $B_1 = B_2 U$, where U is an $n \times n$ matrix (the change-of-basis matrix) with integer entries and with $\det(U) = \pm 1$. (Such a matrix U is called *unimodular*.)
- ♦ **Example.** $B_2 = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}$ and $B_3 = \begin{bmatrix} -2 & 4 \\ -2 & 3 \end{bmatrix}$ are bases for the same lattice since $\begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} -2 & 4 \\ -2 & 3 \end{bmatrix} \cdot \begin{bmatrix} 3 & -2 \\ 2 & -1 \end{bmatrix}$ where U is a unimodular matrix.

Proof of the characterization of lattice bases

- ♦ **Proof.** (\implies) Suppose that B_1 and B_2 are both bases for $L \subseteq \mathbb{R}^n$. Since B_1 is a basis for L , and since the vectors in B_2 are in L , we can write $B_2 = B_1 U$ for some invertible matrix $U \in \mathbb{Z}^{n \times n}$. Similarly, we can write $B_1 = B_2 V$ for some invertible matrix $V \in \mathbb{Z}^{n \times n}$. Now, $B_1 = B_2 V = (B_1 U)V = B_1(UV)$. Since B_1 is invertible, we have $UV = I_n$. Thus, $\det(U)\det(V) = 1$, and hence $\det(U) = \pm 1$ and $\det(V) = \pm 1$.

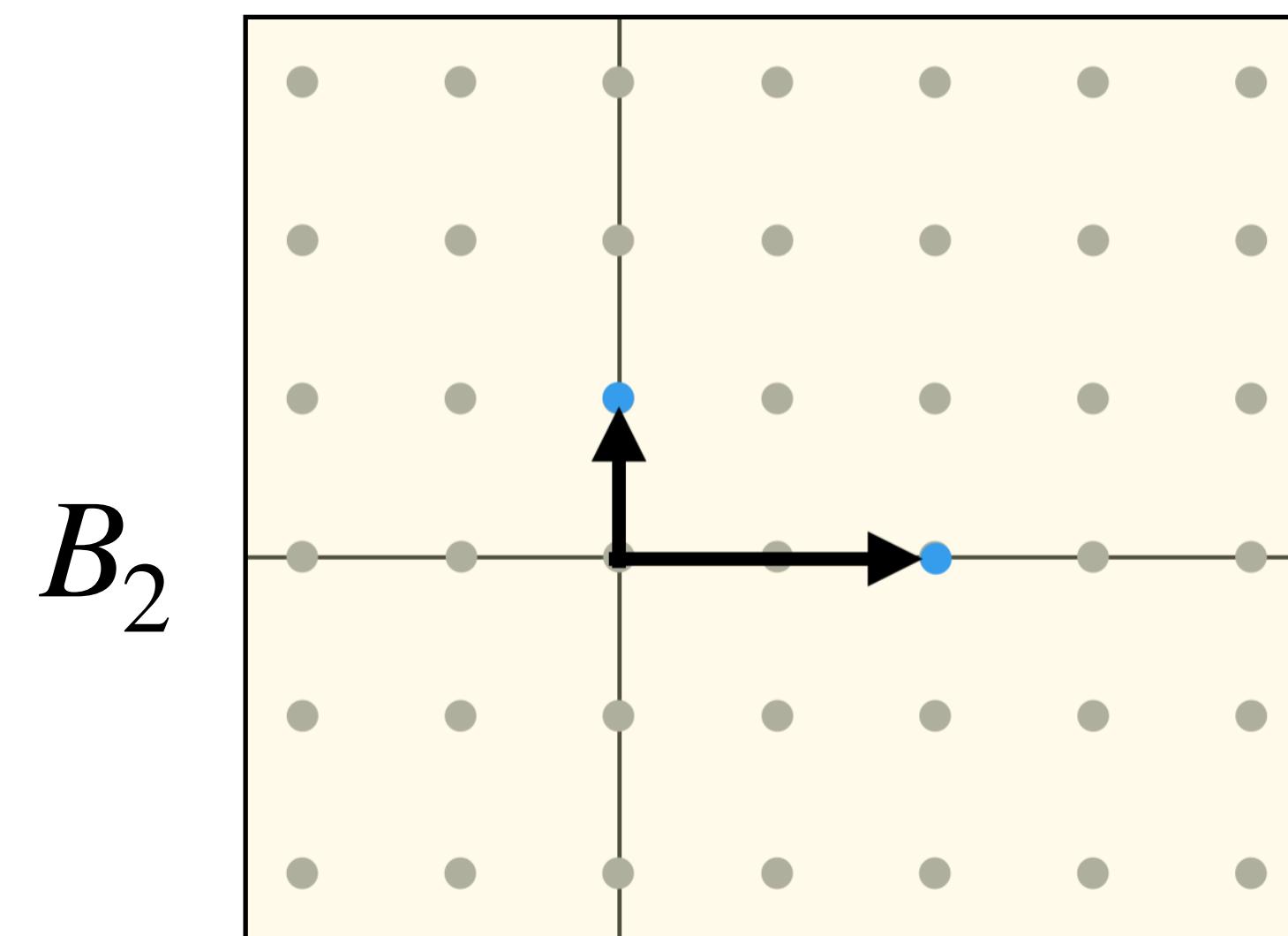
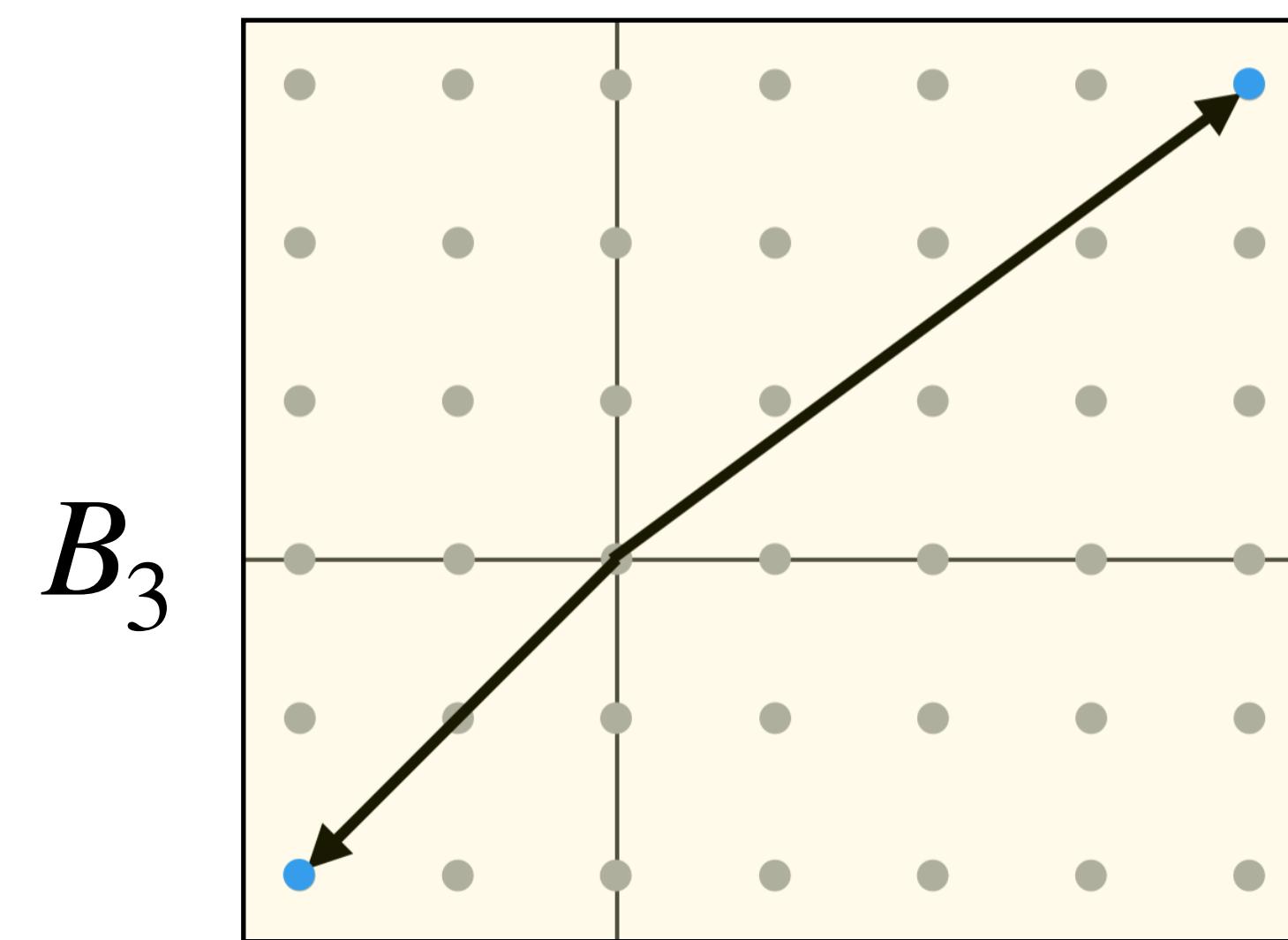
(\iff) Exercise. \square

Volume of a lattice

- ◆ **Definition.** Let $L = L(B)$ be a lattice. The *volume* of L is $\text{vol}(L) = |\det(B)|$.
- ◆ **Note:** The volume of a lattice is the “volume” of the fundamental parallelepiped of the lattice.
 - ◆ If the lattice is 2-dimensional, then its volume is the *area* of its parallelepiped.
 - ◆ Informally, the volume of a lattice is inversely proportional to the density of its lattice vectors. The larger the volume, the sparser is the lattice.
- ◆ **Exercise.** Show that the volume is an *invariant* of L , i.e., it doesn’t depend on the basis B chosen for L .
- ◆ **Exercise.** Suppose that $L_1 \subseteq L_2$. Prove that $\text{vol}(L_1) \geq \text{vol}(L_2)$.

Some bases are nicer than others

- ◆ **Shortest Vector Problem (SVP):**
Given a lattice $L = L(B) \subseteq \mathbb{Z}^n$, find a shortest nonzero vector in L .
- ◆ **Example:** Consider the two SVP instances $L_2 = L(\{(2,0), (0,1)\})$ and $L_3 = L(\{(-2, -2), (4,3)\})$.
- ◆ So, hardness of an SVP instance $L(B)$ depends on the quality of the given basis B for L .



Successive minima

- ♦ A fundamental problem in lattice-based cryptanalysis is finding a “good” basis for a lattice.
- ♦ **Definition:** Let $L \subseteq \mathbb{Z}^n$ be a lattice. For each $i \in [1, n]$, the i th *successive minimum* $\lambda_i(L)$ is the smallest real number r such that L has i linearly independent vectors the longest of which has length r .
- ♦ **Notes:**
 1. $\lambda_1(L) \leq \lambda_2(L) \leq \dots \leq \lambda_n(L)$.
 2. $\lambda_1(L)$ is the length of a shortest nonzero vector in L .
 3. (Minkowski's Theorem) $\lambda_1(L) \leq \sqrt{n} \operatorname{vol}(L)^{1/n}$.
 4. (Gaussian Heuristic) $\lambda_1(L) \approx \sqrt{n/(2\pi e)} \operatorname{vol}(L)^{1/n}$ for random lattices.
 5. $\lambda_n(L)$ is a lower bound on the length of a shortest basis for L .

LLL lattice basis reduction algorithm

- ♦ (1982) The **Lenstra-Lenstra-Lovász (LLL) algorithm** is a polynomial-time algorithm for finding a relatively short basis for a lattice L .
- ♦ **Notes:**
 1. The LLL algorithm is a clever modification of the Gram-Schmidt process for finding an orthogonal basis for a vector space in \mathbb{R}^n .
 2. Let $B = \{b_1, b_2, \dots, b_n\}$ be the basis for L produced by the LLL algorithm, with $\|b_1\|_2 \leq \|b_2\|_2 \leq \dots \leq \|b_n\|_2$. Then $\|b_i\|_2 \leq 2^{(n-1)/2} \lambda_i(L)$ for $1 \leq i \leq n$. In particular, $\|b_1\|_2 \leq 2^{(n-1)/2} \lambda_1(L)$ and $\|b_n\|_2 \leq 2^{(n-1)/2} \lambda_n(L)$.
 3. Also, $\|b_1\|_2 \leq 2^{(n-1)/4} \text{vol}(L)^{1/n}$, and $\prod_{i=1}^n \|b_i\|_2 \leq 2^{n(n-1)/4} \text{vol}(L)$.

Cryptanalytic applications of LLL

- ♦ Let $B = \{b_1, b_2, \dots, b_n\}$ be the basis for L produced by the LLL algorithm, with $\|b_1\|_2 \leq \|b_2\|_2 \leq \dots \leq \|b_n\|_2$. Then $\|b_i\|_2 \leq 2^{(n-1)/2} \lambda_i(L)$ for $1 \leq i \leq n$.
- ♦ In practice, the basis produced by LLL is typically significantly shorter than the above guarantee.
- ♦ LLL has been used to design attacks on many number-theoretic problems and public-key cryptographic systems.
 - ♦ e.g., see “Lattice attacks on digital signatures schemes”, *Designs, Codes and Cryptography*, by N. Howgrave-Graham and N. Smart (2000): Finds the DSA (and ECDSA) secret key when a small number of bits of each per-message secret for several signed messages are leaked.
 - ♦ e.g., see “Lattice reduction in cryptology: an update”, *Proceedings of ANTS-IV*, by P. Nguyen and J. Stern (2000).

SVP: A fundamental lattice problem

- ♦ **Shortest Vector Problem (SVP):** Given a lattice $L = L(B)$, find a lattice vector of length $\lambda_1(L)$.
 - ♦ SVP is **NP-hard**.
 - ♦ The fastest (classical) algorithm known for SVP has (heuristic) running time $2^{0.292n+o(n)}$.
 - ♦ The fastest quantum algorithm known for SVP has (heuristic) running time $2^{0.265n+o(n)}$.
- ♦ **Approximate-SVP problem (SVP_γ):** Given a lattice $L = L(B)$, find a nonzero lattice vector of length at most $\gamma \cdot \lambda_1(L)$.
 - ♦ SVP_γ is believed to be hard for small γ .
It's NP-hard for constant γ , but likely isn't NP-hard if $\gamma > \sqrt{n}$.
 - ♦ For $\gamma = 2^k$, the fastest algorithm known for SVP_γ has running time $2^{\tilde{\Theta}(n/k)}$ (where $\tilde{\Theta}$ hides a power of $\log n$).
 - ♦ If $\gamma > 2^{(n \log \log n)/\log n}$, then SVP_γ can be efficiently solved using the LLL algorithm.

SIVP: Another fundamental lattice problem

- ♦ **Shortest Independent Vectors Problem (SIVP):** Given a lattice $L = L(B)$, find n linearly independent vectors in L all of which have length at most $\lambda_n(L)$.
 - ♦ A solution to SIVP isn't necessarily a basis for L .
 - ♦ SIVP is **NP-hard**.
- ♦ **Approximate-SIVP problem (SIVP_γ):** Given a lattice $L = L(B)$, find n linearly independent vectors in L all of which have length at most $\gamma \cdot \lambda_n(L)$.
 - ♦ The hardness of SIVP_γ is similar to that of SVP_γ .
 - ♦ **Fact:** $\text{SIVP}_{\gamma\sqrt{n}} \leq \text{SVP}_\gamma$.