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Modules

+ Main idea in Module-SIS (MSIS)
Replace polynomials ay, a,, ..., a, in Ring-SIS by vectors of polynomials in Rc]]‘.

+ Main idea in Module-LWE (MLWE)
Replace polynomials ay, a,, ..., a; in Ring-LWE by vectors of polynomials in Rg .

+ The MSIS and MLWE lattices are less structured than their Ring-SIS and Ring-LWE counterparts.

+ Recall: R=Z[x]/(x"+ 1) and R, = Z [x]/(x" + 1), where n = 2%.

+ We will work with modules R c]]‘ for MSIS (and R 5 for MLWE).
+ The module Rc’]‘ is comprised of the length-k vectors of polynomials in R,
+ Such vectors can be added and subtracted component-wise, so the result is also a vector in Rc]]‘.
+ The inner product (multiplication) of two vectors in Rc]]‘ results in a polynomial in R,

. k -
+ The size of a = (a,a,, ..., q) € R, is ||a]| , = mljclx |a|| -

+ See V1b of my “Kyber and Dilithium” course for examples.
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Module-SIS (1)

+ MSIS(n,k, 7, g, B):
Given a,,a,, ...,a, Ep Rc’]C (Where £ > k), find z;,25,...,2, € R, such that
a,z; + a2, + -+ + a,z, = 0 where ||z|| ., £ B and not all z; are 0.

+ Note: Each g; is now a vector of polynomials: a; = [¢;1 dpn *+ ay]”.

+ So, Module-SIS asks for a “small” nonzero solution to the polynomial-matrix

A1 dpp = dp {1 0
. ip Upyp =+ Upp %) 0
equation: , , , , — ,
A, d e A Z
1k 2k ok kXt 2 X1 0 kx1

+ Note: If (74, 29, ..., 2,) is a solution then so is (xz, X2, ..., XZ,).

7. Module-SIS and Module-LWE 105 Lattice-Based Cryptography  © Alfred Menezes



Module-SIS (2)

+ Equivalent formulation of MSIS(n, k, £, g, B):
Given a, a,, ...,d, Ep RCI;, find nonzero z € [—B, B]" (where m = £n) such
that Az = 0 (mod ¢g), where

circ(a;y) circ(a,) --- circ(da, )
A — circ(ayp) circ(ay) -+ circ(dy,)
circ(ay,) circ(a,,) -+ circ(az)

knXt¢'n

+ So, MSIS is a special case of SIS where the matrix A is structured.
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Example: MSIS (1)

+ Letq=67, n=4, fo)=x"+1, R, =Zgxl/x*+1), k=2, £=3, B=10.

+ Let al —_ [all, alz]T — [32 + 66X2 + 33)63, 30 + 64)6 + 31)62 + 65)63]T = qu,
ar = [ayy, ]! = [42 + 44x + 20x% + 65x°, 63 + 41x + 19x* + 64x°]! € Rg,
ay = [azy, azy]! = [2 + 60x + 33x% + 42x°, 26 + 9x + 57x* + 7x°)! € Rg.

+ MSIS instance: Find z, 25, 23 € R, not all 0, with a2, + a2, + a3;23 = 0 (mod g),
a192; + Ay + a3 = 0 (mod g), and ||z]|, < 10.

32 34 1 0142 2 47 2312 25 34 7
0 32 34 1144 42 2 47160 2 25 34
66 0 32 3420 44 42 2 |33 60 2 25

 Wehave A — |33.66 0 32165 20 44 42 |42 33 60 2

30 2 36 3163 3 48 26|26 60 10 58
64 30 2 36|41 63 3 48|19 26 60 10

31 64 30 2|19 41 63 3 |57 9 26 60

65 31 64 30164 19 41 6317 57 9 26]. ,
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Example: MSIS (2)

+ Gaussian elimination (mod g) on A yields the following matrix in reduced form:

1 0

A=

OO O O O O O
OO O OO =

0

0

SO O O = O

0

0

SO O = O O

0

0

S O = O O O

0

0

OO = O O O O

0

O = O O O O O

0 17 27 21
39 17 27
46 39 17
40 46 39
29 44
14 46 29
23 14 46
38 23 14

—_— O O O O O O
N
@)

23
21
27
17
53|
=
29
46

+ The set of all solutions r = (1,75, ..., F{5) € Zég to A'r =0 (mod g) is:

ry = 50ry + 40ro + 461, + 391,
ry = 2lrg + 28ry + 50r;; + 40r,
rs = 2lrg + 38r;g + 23r) + 141,
r; = 44ry + 53r g+ 21r;; + 38r

7. Module-SIS and Module-LWE

ry = 28rg + 50r|o + 40r,; + 461,
ry=27rg+ 21ryy+ 28r;; + 50r,
re = 33rg+ 21ry g+ 38r;; +23r
re = 29rg + 44r o+ 53r;; + 21r,.
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Example: MSIS (3)

+ The total number of solutions to A’7 = 0 (mod ¢) is g* = 20,151,121.
+ Of these, the number of solutions r that are nonzero and in [—10, 10]'? is 8.

+ The MSIS solution (up to multiplication by £1, £ x, * x%, £ x7)is:
r=(6,-8,8,0,2,10,-6,3,-9,6, 3,2)

+ The solution in polynomial form is:
7;(x) = 6 — 8x + 8x%, z,(x) =2+ 10x — 6x% + 3x>, z3(x) = — 9 + 6x + 3x% + 2x°.

+ Check:
(i) Ar =0 (mod g),
(i) ay;(0)z;(x) + a31(0)25(x) + a31(x)z3(x) = 0in R, and

(iii) a(X)z1(X) + ax(X)25(x) + azp(x)z3(x) = 0 in Rq-
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Module-SIS notes

+ Langlois and Stehlé (2015) introduced MSIS and proved that solving MSIS on average is at least as

hard as solving SIVP, for module lattices in the worst case. — — —
CiI‘C(al 1) Cer(azl) e ClI‘C(aﬁ)
+ Setting k = 1 gives an instance of Ring-SIS. — — —
A _ Cer(alz) Cer(azz) e Cer(afz)
+ Setting n = 1 (replacing R by Z ) gives an instance of SIS.
+ 50, MSIS “interpolates” between SIS and Ring-SIS. clrelay) - clrclay) - clrcldgy) knx¢n

+ A primary advantage of MSIS over Ring-SIS is that parameters g and n can be fixed for MSIS, and
then k can be varied for different security levels.

+ For example, Dilithium fixes ¢ = 8380417, n = 256, and (k, ©) € {(4,4), (6,5), (8,7)},
where now the underlying matrix of polynomials is [A | . ],, , where A €, Rgx"ﬂ .
So, Dilithium is “closer” to Ring-SIS than to SIS.

+ Since 2n = 512 divides g — 1, the Number-Theoretic Transform can be used for fast polynomial
multiplicationin R, = Z [x]/ (x>0 4+ 1).
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Module-LWE

+ MLWE(n, k, ¢, g, B):
Lets €p Rg and e € S5 where k > £ and B < ¢/2.
Leta,a,,...,aq, € Rc’]’ﬂ and b; = aiTS + e; € Rq fori=1,...,k.
Given the a; and b,, determine s.
+ Note that each a, is now a vector of polynomials: @, = [@;1 @ = ]

+ 50, Module-LWE asks for a solution s & Rj ,e e S g to the polynomial-matrix

A1 dip = dyp 51 €1 b,
| Ay Qyy =+ Aoy \)) €, b
equation: | | ) . . + | — | 72
a.. dp, - d S e
kL Tk2 K 1 e L0 o K1 i by o
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Module-LWE (2)

+ Equivalent formulation of MLWE(n, k, Z, g, B):
Lets €p Rg and e €, Sk where k > £ and B < ¢/2.

Leta,ay,...,aq, €p Rg and b, = a's + ¢; € R fori=1,...,k

Given the a; and b, find s € Zgn and e € [—B, B]"" such that As + ¢ = b (mod g), where

a(all) ﬁ(aﬂ) eee ﬁ(afl) bl
circ(a circ(a ... circ(a b
A — ( 12) ( 22) ( fz) and b = .2
circ(a circ(a ... circ(a b

(@) on (@) X En K1

+ So, MLWE is a special case of LWE where the matrix A is structured.
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Example: Module-LWE (1)

+Letq=37, n=4, f0)=x"+1, R, =Z3xl/x*+ 1), k=3, £=2, B=1.

+ Module-LWE instance: Given

ap(x) 21 + 5x% + 19x° ay5(x) 1 +23x + 9x” + 8x°
ay = a0 | = |4+ 14x+20x2+ 193 |, ay = [anX)| = |24 + 23x + 22x* + 21x° |,
as(x) 13 + 7x + 6x% + 8x° a35(X) 34 4+ 33x + 32x% 4+ 31x°
by (x) 19 + 32x + 7x? + 20x°
and b = | b,(x) | = 32 + 19x2 + 8x° ,

b5(x) 20 + 15x + 11x% + 14x°

s1(x)

) = R; such that b(x) — a;;(x)s{(x) — a,(x)s,(x) = e(x) € §, fori = 1,2,3.
SH(x

find s = [
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Example: Module-LWE (2)

+ Solve As +e =b (mod 37) fors € Z§7 and e € [—1,1]'%, where

21 18 32 0|1 29 28 14 19
0 21 18 32|23 1 29 28 32
5 0 21 18/9 23 1 29 7
19 5 0 21 90 23 1 20
4 18 17 23 16 15 14 32
14 4 18 17 24 16 15 0

A= 150 14 4 18 23 24 16 and b=
19 20 14 4 02 23 24 8
13 29 31 30 6 5 4 29
7 13 29 31 34 6 5 15
6 7 13 29 33 34 6 11
8 6 7 13 32 33 34| 4] .
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Example: Module-LWE (3)

+ Solve As + e = b (mod 37), where s € Z§7 and e € [-1,1]'%.

+ There are two solutions (s, e):
+ s=1[31,32,33,2,17,35,13,32], e =[-1,0,-1,1,0,-1,-1,0,1,0,0, 1]".
+ §=1[2,29,9,22.32.12,27,18], e =[-1,0,1,0,1,-1,0,-1,1,-1,-1,0]".

+ The first solution in polynomial form is:
s;(x) = 31 4+ 32x + 33x% + 2x°, 5,(x) = 17 + 35x + 13x% + 32x°,
e(x) =—1- x>+ x°, er(x) = —x — X2, eq(x) = 1 + x°.

+ Check: As+ e =b (mod 37)
and a;;(x)s{(x) + a,»5,(x) + e(x) = b(x) in R, fori = 1,2,3.
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Module-LWE notes

+ Module-LWE was introduced by Brakerski, Gentry and Vaikuntanathan (2011).

+ Check: Setting £ = 1 gives an instance of Ring-LWE. circ(ay;) circ(ay) - circ(az)
+ Setting n = 1 (replacing R by Z ) gives an instance of LWE. A= |Frel) cirdlay) - circldg)
+ S0, MLWE “interpolates” between LWE and Ring-LWE. circ(ay) circ(ay) - circ(ag) v

+ Langlois and Stehlé (2015) proved that solving MLWE on average is at least as hard as
quantumly solving SIVP, for module lattices in the worst case.

+ However, as with Regev’s worst-case to average-case reduction for LWE, the
reduction is highly non-tight (and also a quantum reduction).

+ For a concrete analysis of the Langlois-Stehlé reduction for MLWE (and also the
Lyubashevsky-Peikert-Regev reduction for Ring-LWE) see:
“Concrete analysis of approximate Ideal-SIVP to Decision Ring-LWE reduction”
by Koblitz, Samajder, Sarkar and Singha, https:/ /eprint.iacr.org/2022/275.
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MLWE versus Ring-LWE

+ A primary advantage of MLWE over Ring-LWE is that parameters

g and n can be fixed for MLWE, and then ¢ can be changed for
different security levels.

+ For example, Dilithium fixes ¢ = 8380417 and n = 256, and
(k9 f) e {(494)9 (695)9 (897)}°

+ So, one can optimize arithmetic in the polynomial ring

+ Dilithium is “closer” to Ring-LWE than to LWE.
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Kyber-PKE: Key generation

Key generation: Alice does: g = 3329, n = 256.

1. Selects €5 Sk R, = Z3329[x]/()c256 + 1).

2. SelectA €p Rc’]‘x" and e €p S,;‘l. ke {2,34),

3. Compute b = As + e. (n,n) € 1(3,2),(2,2),(2,2)}.

4. Alice’s public key is (A, b); her private key is s.

Computing s from (A, b) is an instance of ss-MLWE.

Determining any information about s from (A, b) is an instance of ss-DMLWE.
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Encryption: To encrypt a message
m € {0,1}%° for Alice, Bob does:

1. Obtain an authentic copy of Alice’s
encryption key (A, b).

k k /
2. Selectr €g 5, z€g S5, and 7' €g 5, .

3. Computec; =A’r+z and
¢, =blr+7+ [q/2|m.

4. Output ¢ = (¢, ¢y).

. k
Note: c € Rq X Rq.

7. Module-SIS and Module-LWE
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Kyber-PKE: Encryption and Decryption

Decryption: To decrypt ¢ = (¢, ),
Alice does:

1. Compute m = Round,(c, — s’ ¢)).

Security:
Kyber-PKE is indistinguishable against
chosen-plaintext attack assuming the

hardness of short-secret Decisional
Module-LWE.
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Security

+ No attacks (either theoretical or practical) are known on Module-SIS or
Module-LWE that are any faster than the fastest attacks known on SIS
and LWE.

+ In other words, no attacks are known on Module-SIS or Module-LWE
that exploit the structure in the matrix A.

+ The fastest attacks known on SIS and LWE (see Lecture 5) are used to
select MSIS and MLWE parameters in order to attain a desired security
level.

+ See the “Bochum challenges”: https:/ /bochum-challeng.es
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