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Definition of the SIS lattice
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✦ SIS( ). Given  (where ) and , find  such that 
, where  and .

✦ Define the SIS lattice to be .

✦ Claim 1.  is an integer lattice in .

✦ The claim can be easily proven using the following equivalent definition of a lattice.

✦ Fact. A lattice  is a discrete additive subgroup of .

✦  is an additive subgroup of  means that (i)  is non-empty subset of ; and 
(ii)  for all .

✦  is discrete means that for each , there exists  such that no element of 
 (other than ) is within distance  of .

n, m, q, B A ∈R ℤn×m
q m ≠ n B − q/2 z ∈ ℤm

q
Az = 0 (mod q) z ≪ 0 z ∈ [≥B, B]m

L′
A = {z ∈ ℤm : Az = 0 (mod q)}

L′
A ⟶m

L ⟶m

L ⟶m L ⟶m

x + y, ≥ x ∈ L x, y ∈ L

L x ∈ L ℓ > 0
L x ℓ x

zA = 0 (mod q)
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Rank of the SIS lattice

✦ Claim 2. The SIS lattice  has full rank .

✦ Proof. The lattice  is a sublattice of . 
Now, the  vectors , ,  ,  are in  and are linearly 
independent (over ).  
Thus,  is a full-rank lattice, and so  is also a full-rank lattice.    

✦ Notes. 

1.  is a -ary lattice, i.e. for all  we have  if and only if .

2. A basis matrix for the lattice  is . 
    Thus,  and hence .

L′
A = {z ∈ ℤm : Az = 0 (mod q)} m

qℤm L′
A

m (q,0,…,0) (0,q, …,0) … (0,0,…, q) qℤm

⟶
qℤm L′

A □

L′
A q z ∈ ℤm z ∈ L′

A z mod q ∈ L′
A

qℤm qIm
vol(qℤm) = |det(qIm) | = qm vol(L′

A ) ≫ qm
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Volume of the SIS lattice
✦ Claim 3. The SIS lattice  has volume  

(assuming that  has rank  over .)

✦ Proof.  and  are free (additive) abelian groups of rank .

✦ Since  is a subgroup of , and they have the same rank,  
the quotient group  is finite. Moreover, . 
(This is Theorem 1.17 in Stewart & Tall’s book.)

✦ So, to determine , we need to compute , the number of cosets of  in .

✦ Now, let . Then      
.

✦ Assuming that  has rank  over , its column space has dimension  over . 

✦ Thus, the column space of  has size , whence .    

L′
A = {z ∈ ℤm : Az = 0 (mod q)} qn

A n ℤq

ℤm L′
A m

L′
A ℤm

ℤm/L′
A vol(L′

A ) = |ℤm/L′
A |

vol(L′
A ) |ℤm/L′

A | L′
A ℤm

x, y ∈ ℤm L′
A + x = L′

A + y ≤ x ≥ y ∈ L′
A ≤A(x ≥ y) = 0 (mod q) ≤

Ax = Ay (mod q)
A n ℤq n ℤq

A qn |ℤm/L′
A | = qn □

58

See Section 1.6 of Algebraic 
Number Theory and Fermat’s 
Last Theorem (3rd edition), by 
Stewart and Tall.
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A basis of the SIS lattice

59

✦ Claim 4. Suppose that the first  columns of  are linearly independent over , 
so  can be row-reduced to a matrix  (where ).  

Then  is a basis matrix for the SIS lattice .

✦ Proof. Since  and  are row equivalent (over ), they have the same null space (mod 
). Hence, , so we will find a basis for . 

Now, each column  of  is in  since  [check this!]. 
Moreover, the columns of  are linearly independent over  since . 
Thus,  is a basis matrix for a full-rank sublattice  of .  
Since , we have . 
Thus,  is a basis matrix for the SIS lattice .  

n A ℤq
A Ã = [In |A] A ∈ ℤn×(m≥n)

q

C = [qIn ≥A
0 Im≥n] ∈ ℤm×m L′

A

A Ã ℤq
q L′

Ã = L′
A L′

Ã
v C L′

Ã Ãv = 0 (mod q)
C ⟶ det(C) = qn

C L L′
Ã

vol(L) = qn = vol(L′
A ) = vol(L′

Ã ) L′
Ã = L

C L′
A □
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Solving SIS
✦ SIS( ). Given  find  such that , where  

and .

✦ An equivalent lattice formulation is: 
SIS : Given , find a nonzero  in the SIS lattice  

where .

✦ For , the infinity norm of  is .

✦ So, an SIS solution  must satisfy .

✦ SIS hardness is usually studied using the Euclidean norm: .

✦ Exercise: Show that for all ,  

n, m, q, B A ∈R ℤn×m
q z ∈ ℤm

q Az = 0 (mod q) z ≪ 0
z ∈ [≥B, B]m

(n, m, q, B) A ∈R ℤn×m
q z ∈ [≥B, B]m L′

A = L(C)

C = [qIn ≥A
0 Im≥n]

z ∈ ⟶m z ΔzΔ⌈ = maxi |zi |

z ∈ ℤm 0 < ΔzΔ⌈ ≫ B

ΔzΔ2 = z2
1 + z2

2 + ⌋ + z2
m

z ∈ ⟶m ΔzΔ⌈ ≫ ΔzΔ2 ≫ m ΔzΔ⌈.
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Solving SIS2
✦ ( ). Given  where , find nonzero  such that 

 and .

✦ An equivalent lattice formulation is: 
: Given , find nonzero  with  in the SIS lattice .

✦ By Minkowski’s Theorem (slide 49), .

✦ We’ll assume that , whereby an  solution is guaranteed to exist.

✦ Now, by the Gaussian heuristic (slide 49), .

✦ Thus,  can be seen as an instance of approximate-SVP ( ) in the SIS lattice  with 
approximation factor .

✦ Exercise: Show that .

SIS2 n, m, q, λ A ∈R ℤn×m
q λ − q z ∈ ℤm

q
Az = 0 (mod q) ΔzΔ2 ≫ λ

SIS2(n, m, q, λ) A ∈R ℤn×m
q z ΔzΔ2 ≫ λ L′

A

π1(L′
A ) ≫ m qn/m

λ ⌉ m qn/m SIS2

π1(L′
A ) ⌊ m/(2γe) qn/m

SIS2 SVPϵ L′
A

ϵ = λ 2γe /( mqn/m)

SIS(n, m, q, B) ≫ SIS2(n, m, q, B) ≫ SIS(n, m, q, B/ m)
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Average-case hardness of SIS
✦ It’s reasonable to conjecture that SIS is hard in the 

worst case.

✦ But, what can we say about the hardness of SIS on 
average?

✦ In 1996, Ajtai proved a striking average case hardness 
result for SIS:

✦ If  is hard in the worst-case, then SIS is hard 
on average.

✦ Such a reduction is called a worst-case to average-
case reduction.

✦ Since the assumption that  is hard in the worst 
case is a reasonable assumption, we have a provable 
guarantee that SIS is hard on average.

SIVPϵ

SIVPϵ
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Any lattice
basis D ℝ ⟶n

SIS solution
z ∈ ℤm

q

Solution to
 in SIVPϵ L(D)

Random 
 instance of 

SIS(n, m, q, B)
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The worst-case to average-case reduction is asymptotic

✦ Although Ajtai’s worst-case to average-case reduction provides a strong 
guarantee for the average-case hardness of SIS, the guarantee is an asymptotic one.

✦ Also, the reduction is highly non-tight.

✦ In 2004, Micciancio & Regev proved the following: 
Theorem. For any , there exists a ) such that 
for any function , solving  on average with non-
negligible probability is at least as hard as solving  in the worst case.

m(n) = ⋯(n log n) q(n) = O(n2 log n
ϵ(n) = β(n log n) SIS2(n, m, q, λ)

SIVPϵ
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SIS summary

SIS is considered a lattice problem for two reasons.

1. SIS is equivalent to solving  in the SIS lattice.

✦ The fastest algorithm known for solving  is the Block-Korkine-Zolotarev 
(BKZ) algorithm, which has an exponential running time.

✦ The running time of BKZ is used to select concrete parameters for SIS for a 
desired security level.

2. Solving SIS on average is provably at least as hard as solving  in the worst case.

✦ This hardness guarantee is an asymptotic one, and its relevance to the hardness 
SIS in practice is not clear.

SVPϵ

SVPϵ

SIVPϵ
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Definition of the LWE lattice
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✦ LWE( ). Let  and .  
Given  and , find .

✦ Define the LWE lattice to be 
.

✦ Claim 1.  is a full-rank (integer) -ary lattice in .

✦ Proof.   is a discrete additive subgroup of , and thus is a lattice. 
Since  is a sublattice of , it follows that  is -ary and has 
rank .   

m, n, q, B s ∈R ℤn
q e ∈R [≥B, B]m

A ∈R ℤm×n
q b = As + e (mod q) s

LA = {y ∈ ℤm : Az = y (mod q) for some z ∈ ℤn} ℝ ⟶m

LA q ⟶m

LA ⟶m

qℤm LA LA q
m □

sA = b (mod q)e+

m × n

n × 1

m × 1 m × 1
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A basis of the LWE lattice
✦ Claim 2. Let  where  and , and suppose that  is 

invertible mod . Let . Then  is a basis 

matrix for  (and so ).

✦ Proof. Since , the columns of  are linearly independent over . 

Write  as where  and . 

Now,      for some       and  
 for some        for 

some . 
Observing that , it follows that the columns of  are a basis for .   

A = [A1
A2] A1 ∈ ℤn×n

q A2 ∈ ℤq
(m≥n)×n A1

q D2 = A2A≥1
1 (mod q) D = [ In 0

D2 qIm≥n] ∈ ℤm×m

LA vol(LA) = qm≥n

det(D) = qm≥n D ⟶
y ∈ ℤm [y1

y2] y1 ∈ ℤn y2 ∈ ℤm≥n

y ∈ LA ≤ y = Az (mod q) z ∈ ℤn ≤ y1 = A1z (mod q)
y2 = A2z (mod q) z ∈ ℤn ≤ y2 = A2A≥1

1 y1 (mod q) ≤ y2 = D2y1 + qc
c ∈ ℤm≥n

y = D [y1
c ] D LA □
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Solving LWE
✦ LWE( ). Let  and .  

Given  and , find .

✦ LWE lattice: 
.

✦ Note that for an LWE instance , we have 
, and .

✦ Thus, LWE is a special instance of the following lattice 
problem: 
Bounded Distance Decoding ( ):  
Given a lattice  and  with the 
guarantee that there is a unique  within distance  
of , find .

m, n, q, B s ∈R ℤn
q e ∈R [≥B, B]m

A ∈R ℤm×n
q b = As + e (mod q) s

LA = {y ∈ ℤm : As = y (mod q) for some s ∈ ℤn} ℝ ⟶m

(A, b, s, e)
y = As mod q ∈ LA Δb ≥ yΔ2 = ΔeΔ2 ≫ m B

BDDω
L = L(D) ℝ ⟶m b ∈ ⟶m

y ∈ L ω
b y

67

y b
ω
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Reducing BDD to SVP (1)
✦ : Given a lattice  and  

with the guarantee that there is a unique  
within distance  of , find .

✦ We’ll suppose that .

✦ Let . Then 

.

✦ Notice that for , we have 
 with 

.   

Hence, .

✦ Suppose now that  has length 

. 

✦ If , then , a 
contradiction.

✦ And, if , then , 
a contradiction.

✦ Hence, we must have .  
If , we have  for some . 

✦ Now, if , then , whence 
, contradicting .

✦ Hence  are the only vectors of length  in 
.

BDDω L = L(D) ℝ ⟶m b ∈ ⟶m

y ∈ L
ω b y

ω < π1(L)/ 2

D⊆ = [D ≥b
0 ω ] ∈ ⟶(m+1)×(m+1)

L⊆ = L(D⊆ ) = {[v ≥ cb
cω ] : v ∈ L(D) and c ∈ ℤ}

(v, c) = (y,1)
ṽ = [y ≥ b

ω ] ∈ L⊆ 

ΔṽΔ2 = Δy ≥ bΔ2
2 + ω2 ≫ 2ω

π1(L⊆ ) ≫ 2ω < π1(L)

v⊆ = [v ≥ cb
cω ] ∈ L⊆ 

Δv⊆ Δ2 = π1(L⊆ )
c = 0 Δv⊆ Δ2 = ΔvΔ2 ⌉ π1(L) > π1(L⊆ )

|c | ⌉ 2 Δv⊆ Δ2 ⌉ 2ω > 2ω ⌉ π1(L⊆ )

c = ± 1
c = 1 v⊆ = [v ≥ b

ω ] v ∈ L

v ≪ y Δv ≥ bΔ2 > Δy ≥ bΔ2
Δv⊆ Δ2 > ΔṽΔ2 Δv⊆ Δ2 = π1(L⊆ )

±ṽ π1(L⊆ )
L⊆ 
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Reducing BDD to SVP (2)

✦ : Given a lattice  and  with the guarantee 
that there is a unique  within distance  of , find .

✦ Summary: We can solve the  instance by solving SVP for  

where .

✦ This method of solving LWE is called a “primal attack using a Kannan 
embedding”.

BDDω L = L(D) ℝ ⟶m b ∈ ⟶m

y ∈ L ω b y

BBDω L(D⊆ )
D⊆ = [D ≥b

0 ω ]
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Average-case hardness of LWE
✦ It’s reasonable to conjecture that LWE is hard in the worst case.

✦ But, what can we say about the hardness of LWE on average?

✦ In 2005, Regev proved a striking average-case hardness result for LWE:

✦ If  is quantumly hard in the worst-case, then LWE is hard on average.

✦ Since the assumption that  is quantumly hard in the worst case is a reasonable 
assumption, we have a provable guarantee that LWE is hard on average.

✦ However, as with Ajtai’s worst-case to average-case reduction for SIS, Regev’s reduction is 
highly non-tight (and also a quantum reduction).

✦ For a concrete analysis of Regev’s reduction, see Section 5 of: 
“Another look at tightness II: practical issues in cryptography”  
by Chatterjee, Koblitz, Menezes & Sarkar,      https://eprint.iacr.org/2016/360.

SIVPϵ

SIVPϵ
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https://eprint.iacr.org/2016/360
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Gaussian distributions

71

✦  I should note that in Regev’s worst-case to average-case reduction, and also 
in much of the cryptographic literature on LWE-based protocols, the 
components of the LWE error vector  are drawn from certain Gaussian 
distributions (and not from uniform distributions)

✦ However, for the sake of simplicity, I didn’t use Gaussians in my lectures.

✦ Also, Kyber and Dilithium use uniform distributions and central binomial 
distributions.

e
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LWE summary
LWE is considered a lattice problem for two reasons.

1. LWE can be reduced to solving  in the LWE lattice, which in turn can be reduced to 
solving an instance of .

✦ The fastest algorithm known for solving  is the Block-Korkine-Zolotarev (BKZ) 
algorithm, which has an exponential running time.

✦ The running time of BKZ can be used to select concrete parameters for LWE for a 
desired security level.

2. Solving LWE on average is provably at least as hard as (quantumly) solving  in the 
worst case.

✦ This hardness guarantee is an asymptotic one, and its relevance to LWE in practice 
is not clear.

BDDω
SVP

SVP

SIVPϵ
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