

THE MATHEMATICS OF LATTICE-BASED CRYPTOGRAPHY

5. SIS/LWE and Lattices

Alfred Menezes
cryptography101.ca

Outline

1. The SIS lattice
2. Average-case hardness of SIS
3. The LWE lattice
4. Average-case hardness of LWE

Definition of the SIS lattice

- ♦ **SIS(n, m, q, B)**. Given $A \in_R \mathbb{Z}_q^{n \times m}$ (where $m \gg n$) and $B \ll q/2$, find $z \in \mathbb{Z}_q^m$ such that $Az = 0 \pmod{q}$, where $z \neq 0$ and $z \in [-B, B]^m$.

- ♦ Define the *SIS lattice* to be $L_A^\perp = \{z \in \mathbb{Z}^m : Az = 0 \pmod{q}\}$.

- ♦ **Claim 1.** L_A^\perp is an integer lattice in \mathbb{R}^m .

- ♦ The claim can be easily proven using the following *equivalent* definition of a lattice.

- ♦ **Fact.** A lattice L is a discrete additive subgroup of \mathbb{R}^m .

- ♦ L is an *additive subgroup* of \mathbb{R}^m means that (i) L is non-empty subset of \mathbb{R}^m ; and (ii) $x + y, -x \in L$ for all $x, y \in L$.

- ♦ L is *discrete* means that for each $x \in L$, there exists $\epsilon > 0$ such that no element of L (other than x) is within distance ϵ of x .

$$\begin{array}{c|c|c} A & z & 0 \end{array} \pmod{q}$$

Rank of the SIS lattice

- ♦ **Claim 2.** The SIS lattice $L_A^\perp = \{z \in \mathbb{Z}^m : Az = 0 \pmod{q}\}$ has full rank m .
- ♦ **Proof.** The lattice $q\mathbb{Z}^m$ is a sublattice of L_A^\perp .
Now, the m vectors $(q, 0, \dots, 0), (0, q, \dots, 0), \dots, (0, 0, \dots, q)$ are in $q\mathbb{Z}^m$ and are linearly independent (over \mathbb{R}).
Thus, $q\mathbb{Z}^m$ is a full-rank lattice, and so L_A^\perp is also a full-rank lattice. \square
- ♦ **Notes.**
 1. L_A^\perp is a q -ary lattice, i.e. for all $z \in \mathbb{Z}^m$ we have $z \in L_A^\perp$ if and only if $z \bmod q \in L_A^\perp$.
 2. A basis matrix for the lattice $q\mathbb{Z}^m$ is qI_m .
Thus, $\text{vol}(q\mathbb{Z}^m) = |\det(qI_m)| = q^m$ and hence $\text{vol}(L_A^\perp) \leq q^m$.

Volume of the SIS lattice

- ♦ **Claim 3.** The SIS lattice $L_A^\perp = \{z \in \mathbb{Z}^m : Az = 0 \pmod{q}\}$ has volume q^n (assuming that A has rank n over \mathbb{Z}_q .)
- ♦ **Proof.** \mathbb{Z}^m and L_A^\perp are free (additive) abelian groups of rank m .
- ♦ Since L_A^\perp is a subgroup of \mathbb{Z}^m , and they have the same rank, the quotient group \mathbb{Z}^m/L_A^\perp is finite. Moreover, $\text{vol}(L_A^\perp) = |\mathbb{Z}^m/L_A^\perp|$. (This is Theorem 1.17 in Stewart & Tall's book.)
- ♦ So, to determine $\text{vol}(L_A^\perp)$, we need to compute $|\mathbb{Z}^m/L_A^\perp|$, the number of cosets of L_A^\perp in \mathbb{Z}^m .
 - ♦ Now, let $x, y \in \mathbb{Z}^m$. Then $L_A^\perp + x = L_A^\perp + y \iff x - y \in L_A^\perp \iff A(x - y) = 0 \pmod{q} \iff Ax = Ay \pmod{q}$.
 - ♦ Assuming that A has rank n over \mathbb{Z}_q , its column space has dimension n over \mathbb{Z}_q .
 - ♦ Thus, the column space of A has size q^n , whence $|\mathbb{Z}^m/L_A^\perp| = q^n$. \square

See Section 1.6 of *Algebraic Number Theory and Fermat's Last Theorem* (3rd edition), by Stewart and Tall.

A basis of the SIS lattice

- ♦ **Claim 4.** Suppose that the first n columns of A are linearly independent over \mathbb{Z}_q , so A can be row-reduced to a matrix $\tilde{A} = [I_n | \bar{A}]$ (where $\bar{A} \in \mathbb{Z}_q^{n \times (m-n)}$).

Then $C = \begin{bmatrix} qI_n & -\bar{A} \\ 0 & I_{m-n} \end{bmatrix} \in \mathbb{Z}^{m \times m}$ is a basis matrix for the SIS lattice L_A^\perp .

- ♦ **Proof.** Since A and \tilde{A} are row equivalent (over \mathbb{Z}_q), they have the same null space (mod q). Hence, $L_{\tilde{A}}^\perp = L_A^\perp$, so we will find a basis for $L_{\tilde{A}}^\perp$.

Now, each column v of C is in $L_{\tilde{A}}^\perp$ since $\tilde{A}v = 0 \pmod{q}$ [check this!].

Moreover, the columns of C are linearly independent over \mathbb{R} since $\det(C) = q^n$.

Thus, C is a basis matrix for a full-rank sublattice L of $L_{\tilde{A}}^\perp$.

Since $\text{vol}(L) = q^n = \text{vol}(L_A^\perp) = \text{vol}(L_{\tilde{A}}^\perp)$, we have $L_{\tilde{A}}^\perp = L$.

Thus, C is a basis matrix for the SIS lattice L_A^\perp . \square

Solving SIS

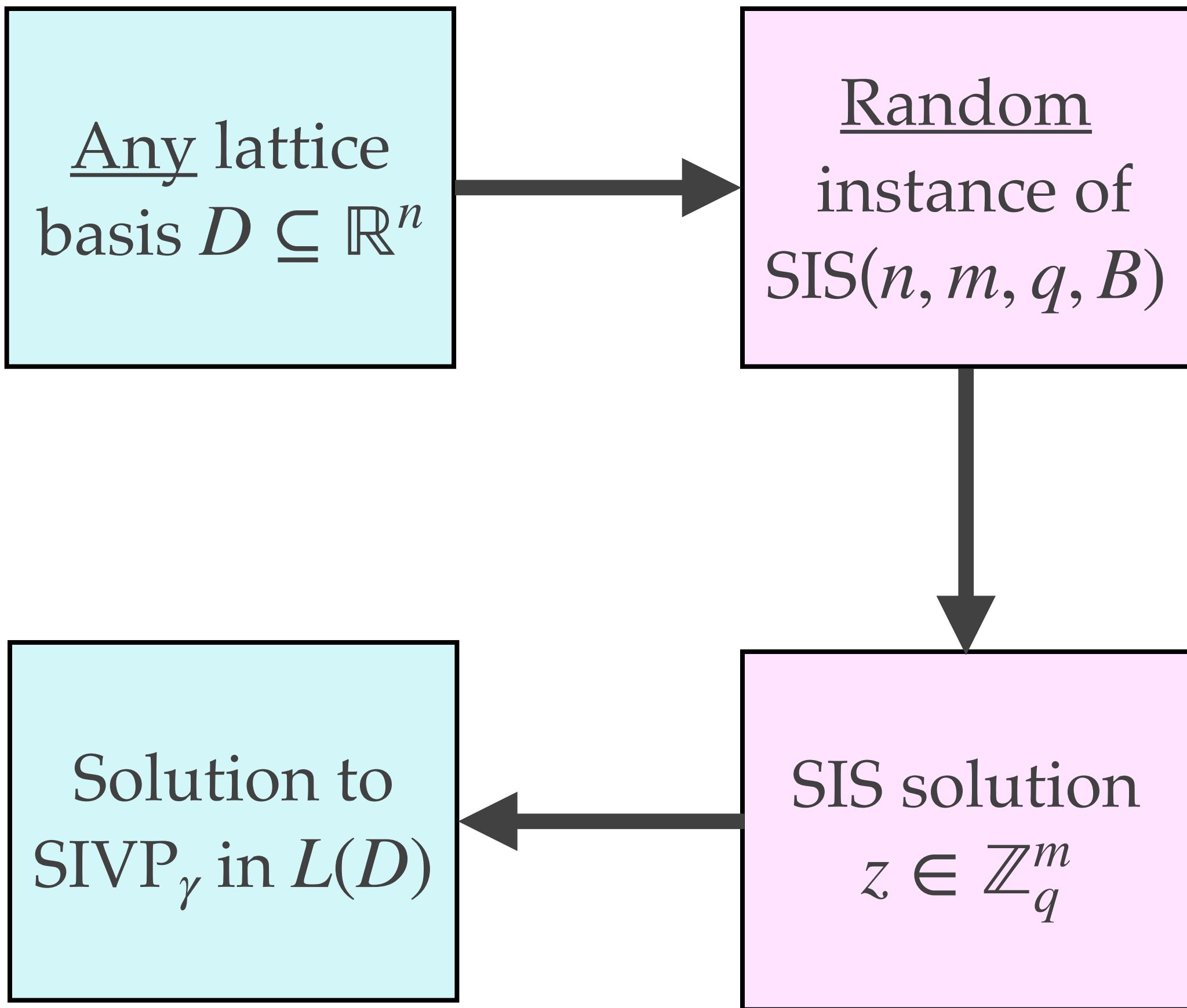
- ♦ **SIS(n, m, q, B)**: Given $A \in_R \mathbb{Z}_q^{n \times m}$ find $z \in \mathbb{Z}_q^m$ such that $Az = 0 \pmod{q}$, where $z \neq 0$ and $z \in [-B, B]^m$.
- ♦ An equivalent **lattice formulation** is:
SIS(n, m, q, B): Given $A \in_R \mathbb{Z}_q^{n \times m}$, find a nonzero $z \in [-B, B]^m$ in the SIS lattice $L_A^\perp = L(C)$ where $C = \begin{bmatrix} qI_n & -\bar{A} \\ 0 & I_{m-n} \end{bmatrix}$.
- ♦ For $z \in \mathbb{R}^m$, the infinity norm of z is $\|z\|_\infty = \max_i |z_i|$.
 - ♦ So, an SIS solution $z \in \mathbb{Z}^m$ must satisfy $0 < \|z\|_\infty \leq B$.
- ♦ SIS hardness is usually studied using the Euclidean norm: $\|z\|_2 = \sqrt{z_1^2 + z_2^2 + \dots + z_m^2}$.
- ♦ **Exercise**: Show that for all $z \in \mathbb{R}^m$, $\|z\|_\infty \leq \|z\|_2 \leq \sqrt{m} \|z\|_\infty$.

Solving SIS₂

- ♦ **SIS₂(n, m, q, β)**. Given $A \in_R \mathbb{Z}_q^{n \times m}$ where $\beta \ll q$, find nonzero $z \in \mathbb{Z}_q^m$ such that $Az = 0 \pmod{q}$ and $\|z\|_2 \leq \beta$.
- ♦ An equivalent lattice formulation is:
SIS₂(n, m, q, β): Given $A \in_R \mathbb{Z}_q^{n \times m}$, find nonzero z with $\|z\|_2 \leq \beta$ in the SIS lattice L_A^\perp .
 - ♦ By Minkowski's Theorem (slide 49), $\lambda_1(L_A^\perp) \leq \sqrt{m} q^{n/m}$.
 - ♦ We'll assume that $\beta \geq \sqrt{m} q^{n/m}$, whereby an SIS₂ solution is guaranteed to exist.
- ♦ Now, by the Gaussian heuristic (slide 49), $\lambda_1(L_A^\perp) \approx \sqrt{m/(2\pi e)} q^{n/m}$.
- ♦ Thus, SIS₂ can be seen as an instance of approximate-SVP (SVP_γ) in the SIS lattice L_A^\perp with approximation factor $\gamma = \beta \sqrt{2\pi e} / (\sqrt{m} q^{n/m})$.
- ♦ **Exercise:** Show that $\text{SIS}(n, m, q, B) \leq \text{SIS}_2(n, m, q, B) \leq \text{SIS}(n, m, q, B/\sqrt{m})$.

Average-case hardness of SIS

- ♦ It's reasonable to conjecture that SIS is hard in the *worst case*.
- ♦ But, what can we say about the hardness of SIS *on average*?
- ♦ In 1996, Ajtai proved a striking *average case hardness result* for SIS:
 - ♦ If SIVP_γ is hard in the *worst-case*, then SIS is hard on *average*.
 - ♦ Such a reduction is called a *worst-case to average-case reduction*.
 - ♦ Since the assumption that SIVP_γ is hard in the worst case is a reasonable assumption, we have a provable guarantee that SIS is hard on average.



The worst-case to average-case reduction is asymptotic

- ♦ Although Ajtai's worst-case to average-case reduction provides a strong guarantee for the average-case hardness of SIS, the guarantee is an *asymptotic* one.
 - ♦ Also, the reduction is *highly non-tight*.
- ♦ In 2004, Micciancio & Regev proved the following:
Theorem. For any $m(n) = \Theta(n \log n)$, there exists a $q(n) = O(n^2 \log n)$ such that for any function $\gamma(n) = \omega(n \log n)$, solving $\text{SIS}_2(n, m, q, \beta)$ on average with non-negligible probability is at least as hard as solving SIVP_γ in the worst case.

WORST-CASE TO AVERAGE-CASE REDUCTIONS BASED ON GAUSSIAN MEASURES*

DANIELE MICCIANCIO[†] AND ODED REGEV[‡]

SIS summary

SIS is considered a lattice problem for two reasons.

1. SIS is equivalent to solving SVP_γ in the SIS lattice.

- ♦ The fastest algorithm known for solving SVP_γ is the Block-Korkine-Zolotarev (BKZ) algorithm, which has an exponential running time.
- ♦ The running time of BKZ is used to select concrete parameters for SIS for a desired security level.

2. Solving SIS on average is provably at least as hard as solving SIVP_γ in the worst case.

- ♦ This hardness guarantee is an asymptotic one, and its relevance to the hardness SIS in practice is not clear.

Definition of the LWE lattice

- ♦ **LWE(m, n, q, B)**. Let $s \in_R \mathbb{Z}_q^n$ and $e \in_R [-B, B]^m$. Given $A \in_R \mathbb{Z}_q^{m \times n}$ and $b = As + e \pmod{q}$, find s .
- ♦ Define the *LWE lattice* to be $L_A = \{y \in \mathbb{Z}^m : Az = y \pmod{q} \text{ for some } z \in \mathbb{Z}^n\} \subseteq \mathbb{R}^m$.
- ♦ **Claim 1.** L_A is a full-rank (integer) q -ary lattice in \mathbb{R}^m .
- ♦ **Proof.** L_A is a discrete additive subgroup of \mathbb{R}^m , and thus is a lattice. Since $q\mathbb{Z}^m$ is a sublattice of L_A , it follows that L_A is q -ary and has rank m . \square

$$\begin{array}{c} A \\ \text{---} \\ m \times n \end{array} \quad \begin{array}{c} s \\ \text{---} \\ n \times 1 \end{array} + \begin{array}{c} e \\ \text{---} \\ m \times 1 \end{array} = \begin{array}{c} b \\ \text{---} \\ m \times 1 \end{array} \pmod{q}$$

A basis of the LWE lattice

- ♦ **Claim 2.** Let $A = \begin{bmatrix} A_1 \\ A_2 \end{bmatrix}$ where $A_1 \in \mathbb{Z}_q^{n \times n}$ and $A_2 \in \mathbb{Z}_q^{(m-n) \times n}$, and suppose that A_1 is invertible mod q . Let $D_2 = A_2 A_1^{-1} \pmod{q}$. Then $D = \begin{bmatrix} I_n & 0 \\ D_2 & qI_{m-n} \end{bmatrix} \in \mathbb{Z}^{m \times m}$ is a basis matrix for L_A (and so $\text{vol}(L_A) = q^{m-n}$).

- ♦ **Proof.** Since $\det(D) = q^{m-n}$, the columns of D are linearly independent over \mathbb{R} .

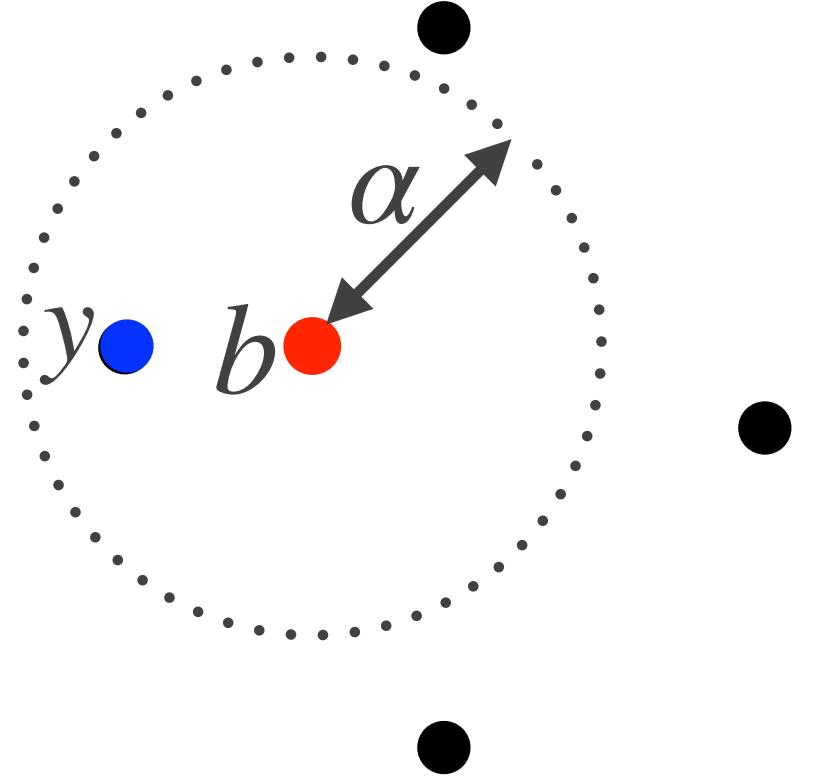
Write $y \in \mathbb{Z}^m$ as $\begin{bmatrix} y_1 \\ y_2 \end{bmatrix}$ where $y_1 \in \mathbb{Z}^n$ and $y_2 \in \mathbb{Z}^{m-n}$.

Now, $y \in L_A \iff y = Az \pmod{q}$ for some $z \in \mathbb{Z}^n \iff y_1 = A_1 z \pmod{q}$ and $y_2 = A_2 z \pmod{q}$ for some $z \in \mathbb{Z}^n \iff y_2 = A_2 A_1^{-1} y_1 \pmod{q} \iff y_2 = D_2 y_1 + qc$ for some $c \in \mathbb{Z}^{m-n}$.

Observing that $y = D \begin{bmatrix} y_1 \\ c \end{bmatrix}$, it follows that the columns of D are a basis for L_A . \square

Solving LWE

- ♦ **LWE(m, n, q, B)**. Let $s \in_R \mathbb{Z}_q^n$ and $e \in_R [-B, B]^m$. Given $A \in_R \mathbb{Z}_q^{m \times n}$ and $b = As + e \pmod{q}$, find s .
- ♦ **LWE lattice**:
$$L_A = \{y \in \mathbb{Z}^m : As = y \pmod{q} \text{ for some } s \in \mathbb{Z}^n\} \subseteq \mathbb{R}^m.$$
- ♦ Note that for an LWE instance (A, b, s, e) , we have $y = As \pmod{q} \in L_A$, and $\|b - y\|_2 = \|e\|_2 \leq \sqrt{m} B$.
- ♦ Thus, LWE is a special instance of the following lattice problem:
Bounded Distance Decoding (BDD $_\alpha$):
Given a lattice $L = L(D) \subseteq \mathbb{R}^m$ and $b \in \mathbb{R}^m$ with the guarantee that there is a unique $y \in L$ within distance α of b , find y .



Reducing BDD to SVP (1)

- ♦ BDD _{α} : Given a lattice $L = L(D) \subseteq \mathbb{R}^m$ and $b \in \mathbb{R}^m$ with the guarantee that there is a unique $y \in L$ within distance α of b , find y .
- ♦ We'll suppose that $\alpha < \lambda_1(L)/\sqrt{2}$.
- ♦ Let $D' = \begin{bmatrix} D & -b \\ 0 & \alpha \end{bmatrix} \in \mathbb{R}^{(m+1) \times (m+1)}$. Then $L' = L(D') = \left\{ \begin{bmatrix} v - cb \\ ca \end{bmatrix} : v \in L(D) \text{ and } c \in \mathbb{Z} \right\}$.
- ♦ Notice that for $(v, c) = (y, 1)$, we have $\tilde{v} = \begin{bmatrix} y - b \\ \alpha \end{bmatrix} \in L'$ with $\|\tilde{v}\|_2 = \sqrt{\|y - b\|_2^2 + \alpha^2} \leq \sqrt{2}\alpha$. Hence, $\lambda_1(L') \leq \sqrt{2}\alpha < \lambda_1(L)$.
- ♦ Suppose now that $v' = \begin{bmatrix} v - cb \\ ca \end{bmatrix} \in L'$ has length $\|v'\|_2 = \lambda_1(L')$.
- ♦ If $c = 0$, then $\|v'\|_2 = \|v\|_2 \geq \lambda_1(L) > \lambda_1(L')$, a contradiction.
- ♦ And, if $|c| \geq 2$, then $\|v'\|_2 \geq 2\alpha > \sqrt{2}\alpha \geq \lambda_1(L')$, a contradiction.
- ♦ Hence, we must have $c = \pm 1$. If $c = 1$, we have $v' = \begin{bmatrix} v - b \\ \alpha \end{bmatrix}$ for some $v \in L$.
- ♦ Now, if $v \neq y$, then $\|v - b\|_2 > \|y - b\|_2$, whence $\|v'\|_2 > \|\tilde{v}\|_2$, contradicting $\|v'\|_2 = \lambda_1(L')$.
- ♦ Hence $\pm \tilde{v}$ are the only vectors of length $\lambda_1(L')$ in L' .

Reducing BDD to SVP (2)

- ♦ **BDD_α**: Given a lattice $L = L(D) \subseteq \mathbb{R}^m$ and $b \in \mathbb{R}^m$ with the guarantee that there is a unique $y \in L$ within distance α of b , find y .
- ♦ **Summary**: We can solve the BBD_α instance by solving SVP for $L(D')$ where $D' = \begin{bmatrix} D & -b \\ 0 & \alpha \end{bmatrix}$.
- ♦ This method of solving LWE is called a “primal attack using a Kannan embedding”.

Average-case hardness of LWE

- ♦ It's reasonable to conjecture that LWE is hard in the *worst case*.
- ♦ But, what can we say about the hardness of LWE *on average*?
- ♦ In 2005, Regev proved a striking *average-case hardness result* for LWE:
 - ♦ If SIVP_γ is quantumly hard in the *worst-case*, then LWE is hard on *average*.
- ♦ Since the assumption that SIVP_γ is quantumly hard in the worst case is a reasonable assumption, we have a provable guarantee that LWE is hard on average.
- ♦ However, as with Ajtai's worst-case to average-case reduction for SIS, Regev's reduction is *highly non-tight* (and also a quantum reduction).
 - ♦ For a concrete analysis of Regev's reduction, see Section 5 of:
“Another look at tightness II: practical issues in cryptography”
by Chatterjee, Koblitz, Menezes & Sarkar, <https://eprint.iacr.org/2016/360>.

Gaussian distributions

- ♦ I should note that in Regev's worst-case to average-case reduction, and also in much of the cryptographic literature on LWE-based protocols, the components of the LWE error vector e are drawn from certain Gaussian distributions (and not from uniform distributions)
- ♦ However, for the sake of simplicity, I didn't use Gaussians in my lectures.
- ♦ Also, Kyber and Dilithium use uniform distributions and central binomial distributions.

LWE summary

LWE is considered a lattice problem for two reasons.

1. LWE can be reduced to solving BDD_α in the LWE lattice, which in turn can be reduced to solving an instance of SVP.
 - ♦ The fastest algorithm known for solving SVP is the Block-Korkine-Zolotarev (BKZ) algorithm, which has an exponential running time.
 - ♦ The running time of BKZ can be used to select concrete parameters for LWE for a desired security level.
2. Solving LWE on average is provably at least as hard as (quantumly) solving SIVP_γ in the worst case.
 - ♦ This hardness guarantee is an asymptotic one, and its relevance to LWE in practice is not clear.