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Definition of the SIS lattice

+ SIS(n,m, g, B). Given A &, ZZX’" (Where m > n)and B < ¢g/2, find 7 € Z’Z; such that

Az =0 (mod ¢g), where 7z # 0 and z € [-B, B]™.
+ Define the SIS lattice to be Lj ={z€Z":Az=0 (mod g)}. i = |E|(m0d q)

+ Claim 1. Ly is an integer lattice in R""

+ The claim can be easily proven using the following equivalent definition of a lattice.

+ Fact. A lattice L is a discrete additive subgroup of R".

+ L is an additive subgroup of R™ means that (i) L is non-empty subset of R™; and
(ii))x+y,—x € Lforallx,y € L.

+ L is discrete means that for each x € L, there exists € > 0 such that no element of
L (other than x) is within distance € of x.
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Rank of the SIS lattice

+ Claim 2. The SIS lattice Lj ={z€ 7" : Az =0 (mod ¢g)} has full rank m.

+ Proof. The lattice gZ"" is a sublattice of Lj.
Now, the m vectors (g,0,...,0), (0,q, ...,0), ..., (0,0,...,g) are in gZ™ and are linearly

independent (over R).
Thus, gZ™ is a full-rank lattice, and so Lj is also a full-rank lattice. []

+ Notes.

1. Ly is a g-ary lattice, i.e. for all z € Z™ we have z € Ly if and only if z mod g € L;-.

2. A basis matrix for the lattice gZ™ is gl .
Thus, vol(gZ™) = |det(gl,) | = g and hence VOl(Lj{) <q".
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Volume of the SIS lattice

+ Claim 3. The SIS lattice LAl ={z€ 7" :Az=0 (mod ¢g)} has volume g"
(assuming that A has rank n over Z .)

See Section 1.6 of Algebraic
+ Proof. 7" and Lj are free (additive) abelian groups of rank m. Number Theory and Fermat’s

Last Theorem (3rd edition), by
Stewart and Tall.

+ Since L; is a subgroup of Z™, and they have the same rank,

the quotient group Z™/L; is finite. Moreover, vol(Ly) = | Z"/L; |.
(This is Theorem 1.17 in Stewart & Tall’s book.)

+ So, to determine Vol(Lj), we need to compute | Z™/ LAl |, the number of cosets of LAl in Z™".

+ Now, letx,y € Z". ThenLj+x=Lj+y(=}x—y ELA' ~A(x—y) =0 (mod q) =
Ax = Ay (mod g).

+ Assuming that A has rank n over Z , its column space has dimension n over Z .

+ Thus, the column space of A has size ¢", whence | Z™/ Lj | = qg".
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A basis of the SIS lattice

+ Claim 4. Suppose that the first n columns of A are linearly independent over Z ,
so A can be row-reduced to a matrix A = [ |A] (wWhere A € Z ’;X(’"—”)).

gl, —A
0 Im—n

Then C = l ] e 7™ ig a basis matrix for the SIS lattice Lj.

+ Proof. Since A and A are row equivalent (over Z q), they have the same null space (mod
q). Hence, Lj = Lj, so we will find a basis for Lj
Now, each column v of Cis in Lf since Av = 0 (mod ¢) [check this!].

Moreover, the columns of C are linearly independent over R since det(C) = g".
Thus, C is a basis matrix for a full-rank sublattice L of Lj

Since vol(L) = g" = Vol(Lj) — VOl(Li‘), we have Li = L.
Thus, C is a basis matrix for the SIS lattice Lj. []

5. SIS/LWE and lattices 59 Lattice-Based Cryptography — © Alfred Menezes



Solving SIS

+ SIS(n,m, q, B). Given A €, szm find z € Z} such that Az = 0 (mod ¢g), where 7 # 0
and z € [—B, B]".

+ An equivalent lattice formulation is:
SIS(n,m, g, B): Given A €, ngm, find a nonzero z € [—B, B]" in the SIS lattice Lj = L(C)

I —-A
where C = L .

+ For z € R", the infinity norm of z is ||z|| ., = max; | z].

+ So, an SIS solution z € Z™ must satisty 0 < ||z|| . < B.

+ SIS hardness is usually studied using the Euclidean norm: ||z||, = \/ 212 + 222 + .-+ znz,t.

+ Exercise: Show that for all z € R", ||z|l, < |lzll, £ Vm ||z]| -
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Solving SlSz

SIS;(n, m, q, ). Given A €, Z’lem where f# < ¢, find nonzero z € Z’Z; such that
Az =0 (mod g) and izll, < f

An equivalent lattice formulation is:
SIS, (n, m, q, p): Given A € szm, find nonzero z with ||z||, < £ in the SIS lattice Lj.

By Minkowski’s Theorem (slide 49), /II(LX) < \/% g"m.

We'll assume that > 1/m g™, whereby an SIS, solution is guaranteed to exist.

Now, by the Gaussian heuristic (slide 49), /ll(Lj) ~ \/ ml/(2me) g"'"™.

Thus, SIS, can be seen as an instance of approximate-SVP (SVP,) in the SIS lattice L; with
approximation factor y = ,B\/ 2rel (\%q”/ ™.

Exercise: Show that SIS(n, m, g, B) < SIS»(n,m, g, B) < SIS(n,m, g, B/ \M).
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Average-case hardness of SIS

+ It's reasonable to conjecture that SIS is hard in the
worst case.

+ But, what can we say about the hardness of SIS on Random

Anv lattice .
average? basigD C R p—)  instance of

+ In 1996, Ajtai proved a striking average case hardness SIS(n, m, q, B)
result tor SIS:

+ If SIVP, is hard in the worst-case, then SIS is hard
on average.

+ Such a reduction is called a worst-case to average-

case reduction. Solution to | SIS solution
SIVP}, in L(D) 7 E ZZ“

+ Since the assumption that SIVP, is hard in the worst

case is a reasonable assumption, we have a provable
guarantee that SIS is hard on average.
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The worst-case to average-case reduction is asymptotic

+ Although Ajtai’s worst-case to average-case reduction provides a strong
guarantee for the average-case hardness of SIS, the guarantee is an asymptotic one.

+ Also, the reduction is highly non-tight.

+ In 2004, Micciancio & Regev proved the following:
Theorem. For any m(n) = O(n log n), there exists a g(n) = O(n”log n) such that
for any function y(n) = w(nlog n), solving SIS,(n, m, g, /) on average with non-
negligible probability is at least as hard as solving SIVP, in the worst case.

WORST-CASE TO AVERAGE-CASE REDUCTIONS BASED ON
GAUSSIAN MEASURES”

DANIELE MICCIANCIOT AND ODED REGEV?
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SIS summary

SIS is considered a lattice problem for two reasons.

1. SIS is equivalent to solving SVP, in the SIS lattice.

+ The fastest algorithm known for solving SVP, is the Block-Korkine-Zolotarev
(BKZ) algorithm, which has an exponential running time.

+ The running time of BKZ is used to select concrete parameters for SIS for a
desired security level.

2. Solving SIS on average is provably at least as hard as solving SIVP, in the worst case.

+ This hardness guarantee is an asymptotic one, and its relevance to the hardness
SIS in practice is not clear.
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Definition of the LWE lattice

+ LWE(m,n,q,B). Let s €5, Z’; and e €, |—B, B]".
Given A € Z’Z;X” and b =As+e (mod g), finds. | 4 "‘

nxl

+ Define the LWE lattice to be — — =
Ly,={ye Z":Az=y (mod g) for some z € Z"} C R™.

m

+ Claim 1. L, is a full-rank (integer) g-ary lattice in [

+ Proof. L, is a discrete additive subgroup of R", and thus is a lattice.
Since g/ is a sublattice of L,, it follows that L, is g-ary and has

rank m. [ ]
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A basis of the LWE lattice

A
+ Claim 2. Let A = ’ All where A| € Z;*" and A, € Z q(m_n)xn, and suppose that A, is
2
0
I

I
invertible mod ¢. Let D, = A,A7! (mod g). Then D = [D ] € 7" is a basis
2 iy

matrix for L, (and so vol(L,) = g"™").
+ Proof. Since det(D) = g""", the columns of D are linearly independent over R.

Writey € Z" as [yl

Y2
Now,ye L, < y=Az (mod g) forsomez € Z" < y, = A,z (mod ¢g) and

y, = A,z (mod q) for some z € /" < y, = AzAl_ly1 (mod qg) < y, = D,y + gc for
somec € Z" ™",

Observing that y = D l

]Where yy€Z"and y, € Z"".

Y1

. ] , it follows that the columns of D are a basis for L,. []
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Solving LWE -

+ LWE(m,n, g, B). Let s € ZZ and e €, [—B, B]". ) o
Given A €, Z;”" and b = As + e (mod g), find s. ° fy‘ : ./

+ LWE lattice:
L,={ye€e Z":As =y (mod g) for some s € Z"} C R"™. o e .-

+ Note that for an LWE instance (A, b, s, ¢), we have
y=Asmod g € L, and ||b —yl||, = |le]l, <\/mB. °

+ Thus, LWE is a special instance of the following lattice
problem: ®
Bounded Distance Decoding (BDD,): ®
Given a lattice L = L(D) C R"™ and b € R™ with the
guarantee that there is a unique y € L within distance « °

of b, find y.
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Reducing BDD to SVP (1)

+ BDD,: Given a lattice L = L(D) C R" and b € R"™
with the guarantee that there is a unique y € L
within distance a of b, find y.

+ We'll suppose that a < /ll(L)/\/z.

D —b
0 a

L = LD = { v ;ad?_ v € L(D)and ¢ € Z}.

+ Let D = [ e Rm+DXm+D) Then

+ Notice that for (v, c) = (y,1), we have
p=1Y" b e L' with
1V, =4/

04

V|5 y—bH%+a2 <4/ 2a.
Hence, A,(L) < v/2a < 4,(L).

5. SIS/LWE and lattices
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+ Suppose now that v’ =

IVl = 4.

V= ¢bl ¢ ['has length
. ca

+ Ifc = O, then ”V,HZ — HVHZ > ﬂl(L) > /II(L,), d

contradiction.

+ And, if |c| > 2, then [V, = 2a > \/2a > A,(L),

a contradiction.

+ Hence, we must have ¢ = £ 1.

Ifc =1, wehaveVv' =

+ Now, if v # y, then ||v — b||, >
V[, > [|V]|,, contradicting |[v’||, = 4;(L).

v —>b

a

forsomev € L.

|y — b||,, whence

+ Hence =V are the only vectors of length 4,(L’) in

L'
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Reducing BDD to SVP (2)

+ BDD,: Given a lattice L = L(D) C R" and b € R™ with the guarantee
that there is a unique y € L within distance a of b, find y.

+ Summary: We can solve the BBD,, instance by solving SVP for L(D’)

where D’ = lD _b].
0 «a

+ This method of solving LWE is called a “primal attack using a Kannan
embedding”.

5. SIS/LWE and lattices 69 Lattice-Based Cryptography — © Alfred Menezes



Average-case hardness of LWE

+ It's reasonable to conjecture that LWE is hard in the worst case.
+ But, what can we say about the hardness of LWE on average?
+ In 2005, Regev proved a striking average-case hardness result tor LWE:

+ If SIVP, is quantumly hard in the worst-case, then LWE is hard on average.

+ Since the assumption that SIVP, is quantumly hard in the worst case is a reasonable
assumption, we have a provable guarantee that LWE is hard on average.

+ However, as with Ajtai’s worst-case to average-case reduction for SIS, Regev’s reduction is
highly non-tight (and also a quantum reduction).

+ For a concrete analysis of Regev’s reduction, see Section 5 of:
“Another look at tightness II: practical issues in cryptography”
by Chatterjee, Koblitz, Menezes & Sarkar,  https:/ /eprint.iacr.org /2016 /360.
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Gaussian distributions

+ Ishould note that in Regev’s worst-case to average-case reduction, and also
in much of the cryptographic literature on LWE-based protocols, the
components of the LWE error vector e are drawn from certain Gaussian
distributions (and not from uniform distributions)

+ However, for the sake of simplicity, I didn’t use Gaussians in my lectures.

+ Also, Kyber and Dilithium use uniform distributions and central binomial
distributions.
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LWE summary

LWE is considered a lattice problem for two reasons.

1. LWE can be reduced to solving BDD,, in the LWE lattice, which in turn can be reduced to
solving an instance of SVP.

+ The fastest algorithm known for solving SVP is the Block-Korkine-Zolotarev (BKZ)
algorithm, which has an exponential running time.

+ The running time of BKZ can be used to select concrete parameters for LWE for a
desired security level.

2. Solving LWE on average is provably at least as hard as (quantumly) solving SIVP, in the
worst case.

+ This hardness guarantee is an asymptotic one, and its relevance to LWE in practice
is not clear.
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